| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2016 |
| Session | June |
| Topic | Sequences and series, recurrence and convergence |
5.(a)Show that
$$\sum _ { r = 0 } ^ { n } x ^ { - r } = \frac { x } { x - 1 } - \frac { x ^ { - n } } { x - 1 } \quad \text { where } x \neq 0 \text { and } x \neq 1$$
(b)Hence find an expression in terms of \(x\) and \(n\) for \(\sum _ { r = 0 } ^ { n } r x ^ { - ( r + 1 ) }\) for \(x \neq 0\) and \(x \neq 1\)
Simplify your answer.
(c)Find \(\sum _ { r = 0 } ^ { n } \left( \frac { 3 + 5 r } { 2 ^ { r } } \right)\)
Give your answer in the form \(a - \frac { b + c n } { 2 ^ { n } }\) ,where \(a , b\) and \(c\) are integers.