| Exam Board | Edexcel |
| Module | F1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | January |
| Topic | Sequences and series, recurrence and convergence |
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } \left( 8 r ^ { 3 } - 3 r \right) = \frac { 1 } { 2 } n ( n + 1 ) ( 2 n + 3 ) ( a n + b )$$
where \(a\) and \(b\) are integers to be found.
Given that
$$\sum _ { r = 5 } ^ { 10 } \left( 8 r ^ { 3 } - 3 r + k r ^ { 2 } \right) = 22768$$
(b) find the exact value of the constant \(k\).