Edexcel F1 2016 January — Question 5

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2016
SessionJanuary
TopicSequences and series, recurrence and convergence

5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \left( 8 r ^ { 3 } - 3 r \right) = \frac { 1 } { 2 } n ( n + 1 ) ( 2 n + 3 ) ( a n + b )$$ where \(a\) and \(b\) are integers to be found. Given that $$\sum _ { r = 5 } ^ { 10 } \left( 8 r ^ { 3 } - 3 r + k r ^ { 2 } \right) = 22768$$ (b) find the exact value of the constant \(k\).