Find stationary points

A question is this type if and only if it asks to find coordinates of points where dy/dx = 0 (tangent parallel to x-axis) on an implicitly defined curve.

60 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
Edexcel C4 2015 June Q2
11 marks Standard +0.3
2. The curve \(C\) has equation $$x ^ { 2 } - 3 x y - 4 y ^ { 2 } + 64 = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) (Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel C4 2018 June Q2
10 marks Standard +0.3
  1. The curve \(C\) has equation
$$x ^ { 2 } + x y + y ^ { 2 } - 4 x - 5 y + 1 = 0$$
  1. Use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the \(x\) coordinates of the two points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) Give exact answers in their simplest form.
    (Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel P4 2022 October Q11
9 marks Standard +0.8
11. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{032d2541-9905-4570-9584-9a144b02fde5-30_766_853_242_607} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the closed curve with equation $$( x + y ) ^ { 3 } + 10 y ^ { 2 } = 108 x$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 108 - 3 ( x + y ) ^ { 2 } } { 20 y + 3 ( x + y ) ^ { 2 } }$$ The curve is used to model the shape of a cycle track with both \(x\) and \(y\) measured in km .
    The points \(P\) and \(Q\) represent points that are furthest north and furthest south of the origin \(O\), as shown in Figure 4. Using the result given in part (a),
  2. find how far the point \(Q\) is south of \(O\). Give your answer to the nearest 100 m .
OCR MEI C3 2007 June Q3
8 marks Standard +0.3
3 A curve has equation \(2 y ^ { 2 } + y = 9 x ^ { 2 } + 1\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at the point \(\mathrm { A } ( 1,2 )\).
  2. Find the coordinates of the points on the curve at which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
OCR MEI C3 2010 June Q5
7 marks Standard +0.3
5 Given that \(y ^ { 3 } = x y - x ^ { 2 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - 2 x } { 3 y ^ { 2 } - x }\).
Hence show that the curve \(y ^ { 3 } = x y - x ^ { 2 }\) has a stationary point when \(x = \frac { 1 } { 8 }\).
OCR MEI C3 Q2
18 marks Standard +0.8
2 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-2_754_870_478_609} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).
OCR MEI C3 Q2
6 marks Standard +0.3
2 A curve has equation \(x ^ { 2 } + 2 y ^ { 2 } = 4 x\).
  1. By differentiating implicitly, find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
    [0pt]
  2. Hence find the exact coordinates of the stationary points of the curve. [You need not determine their nature.]
OCR MEI C3 Q4
8 marks Standard +0.8
4 Fig. 7 shows the curve \(x ^ { 3 } + y ^ { 3 } = 3 x y\). The point P is a turning point of the curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{09d318c7-27b9-43aa-b4a0-e32ea8bd53c5-1_593_531_1573_805} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - x ^ { 2 } } { y ^ { 2 } - x }\).
  2. Hence find the exact \(x\)-coordinate of P .
OCR MEI C3 Q4
8 marks Standard +0.3
4 A curve has equation \(2 y ^ { 2 } + y = 9 x ^ { 2 } + 1\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at the point \(\mathrm { A } ( 1,2 )\).
  2. Find the coordinates of the points on the curve at which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
OCR MEI C3 Q1
18 marks Standard +0.8
1 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0b4c4935-998c-404f-8fed-9b39b849168e-1_752_864_443_617} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).
OCR C4 2007 January Q7
8 marks Standard +0.8
7 The equation of a curve is \(2 x ^ { 2 } + x y + y ^ { 2 } = 14\). Show that there are two stationary points on the curve and find their coordinates.
OCR C4 2008 June Q3
8 marks Standard +0.3
3 The equation of a curve is \(x ^ { 2 } y - x y ^ { 2 } = 2\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y ^ { 2 } - 2 x y } { x ^ { 2 } - 2 x y }\).
  2. (a) Show that, if \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\), then \(y = 2 x\).
    (b) Hence find the coordinates of the point on the curve where the tangent is parallel to the \(x\)-axis.
OCR C4 Specimen Q5
8 marks Standard +0.3
5
  1. For the curve \(2 x ^ { 2 } + x y + y ^ { 2 } = 14\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Deduce that there are two points on the curve \(2 x ^ { 2 } + x y + y ^ { 2 } = 14\) at which the tangents are parallel to the \(x\)-axis, and find their coordinates.
OCR C4 Q2
7 marks Standard +0.3
2. A curve has the equation $$2 x ^ { 2 } + x y - y ^ { 2 } + 18 = 0$$ Find the coordinates of the points where the tangent to the curve is parallel to the \(x\)-axis.
Edexcel AEA 2002 June Q4
14 marks Challenging +1.2
4.Find the coordinates of the stationary points of the curve with equation $$x ^ { 3 } + y ^ { 3 } - 3 x y = 48$$ and determine their nature. \includegraphics[max width=\textwidth, alt={}, center]{7f1bc552-3850-43c5-b435-abc87b264f0a-3_553_749_401_618} Figure 1 shows a sketch of part of the curve with equation $$y = \sin ( \cos x ) .$$ The curve cuts the \(x\)-axis at the points \(A\) and \(C\) and the \(y\)-axis at the point \(B\).
  1. Find the coordinates of the points \(A , B\) and \(C\).
  2. Prove that \(B\) is a stationary point. Given that the region \(O C B\) is convex,
  3. show that, for \(0 \leq x \leq \frac { \pi } { 2 }\), $$\sin ( \cos x ) \leq \cos x$$ and $$\left( 1 - \frac { 2 } { \pi } x \right) \sin 1 \leq \sin ( \cos x )$$ and state in each case the value or values of \(x\) for which equality is achieved.
  4. Hence show that $$\frac { \pi } { 4 } \sin 1 < \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ( \cos x ) d x < 1$$
    \includegraphics[max width=\textwidth, alt={}]{7f1bc552-3850-43c5-b435-abc87b264f0a-4_682_824_399_704}
    Figure 2 shows a sketch of part of two curves \(C _ { 1 }\) and \(C _ { 2 }\) for \(y \geq 0\).
    The equation of \(C _ { 1 }\) is \(y = m _ { 1 } - x ^ { n _ { 1 } }\) and the equation of \(C _ { 2 }\) is \(y = m _ { 2 } - x ^ { n _ { 2 } }\), where \(m _ { 1 }\), \(m _ { 2 } , n _ { 1 }\) and \(n _ { 2 }\) are positive integers with \(m _ { 2 } > m _ { 1 }\). Both \(C _ { 1 }\) and \(C _ { 2 }\) are symmetric about the line \(x = 0\) and they both pass through the points \(( 3,0 )\) and \(( - 3,0 )\). Given that \(n _ { 1 } + n _ { 2 } = 12\), find
OCR MEI C3 2012 January Q7
8 marks Standard +0.3
7 Fig. 7 shows the curve \(x ^ { 3 } + y ^ { 3 } = 3 x y\). The point P is a turning point of the curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8b8958be-0ebc-4f72-ac3f-c16a8ec9e4ab-3_583_513_708_776} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - x ^ { 2 } } { y ^ { 2 } - x }\).
  2. Hence find the exact \(x\)-coordinate of P . Section B (36 marks)
OCR MEI C3 2013 June Q9
18 marks Standard +0.3
9 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-6_752_867_356_584} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).
OCR C4 2009 January Q8
12 marks Standard +0.3
8 The equation of a curve is \(x ^ { 3 } + y ^ { 3 } = 6 x y\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Show that the point \(\left( 2 ^ { \frac { 4 } { 3 } } , 2 ^ { \frac { 5 } { 3 } } \right)\) lies on the curve and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at this point.
  3. The point \(( a , a )\), where \(a > 0\), lies on the curve. Find the value of \(a\) and the gradient of the curve at this point.
OCR C4 2013 January Q3
7 marks Standard +0.3
3 The equation of a curve is \(x y ^ { 2 } = x ^ { 2 } + 1\). Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\), and hence find the coordinates of the stationary points on the curve.
OCR C4 2010 June Q5
7 marks Standard +0.8
5 Find the coordinates of the two stationary points on the curve with equation $$x ^ { 2 } + 4 x y + 2 y ^ { 2 } + 18 = 0$$
CAIE FP1 2015 June Q7
10 marks Standard +0.8
7 The curve \(C\) has equation \(x ^ { 2 } + 2 x y - 4 y ^ { 2 } + 20 = 0\). Show that if the tangent to \(C\) at the point \(( x , y )\) is parallel to the \(x\)-axis then \(x + y = 0\). Hence find the coordinates of the stationary points on \(C\), and determine their nature.
CAIE FP1 2012 November Q10
12 marks Challenging +1.2
10 The curve \(C\) has equation \(x ^ { 3 } + y ^ { 3 } = 3 x y\), for \(x > 0\) and \(y > 0\). Find a relationship between \(x\) and \(y\) when \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\). Find the exact coordinates of the turning point of \(C\), and determine the nature of this turning point.
Edexcel Paper 2 Specimen Q12
7 marks Standard +0.8
  1. A curve \(C\) is given by the equation
$$\sin x + \cos y = 0.5 \quad - \frac { \pi } { 2 } \leqslant x < \frac { 3 \pi } { 2 } , - \pi < y < \pi$$ A point \(P\) lies on \(C\).
The tangent to \(C\) at the point \(P\) is parallel to the \(x\)-axis.
Find the exact coordinates of all possible points \(P\), justifying your answer.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
OCR MEI Paper 2 2024 June Q13
9 marks Standard +0.8
13 Determine the coordinates of the turning points on the curve with equation $$y ^ { 2 } + x y + x ^ { 2 } - x = 1 .$$
OCR MEI Paper 2 Specimen Q12
6 marks Standard +0.8
12 Fig. 12 shows the curve \(2 x ^ { 3 } + y ^ { 3 } = 5 y\). \includegraphics[max width=\textwidth, alt={}, center]{e9f3a5f3-210b-453d-9ff5-8518340f5689-08_841_606_900_212}
  1. Find the gradient of the curve \(2 x ^ { 3 } + y ^ { 3 } = 5 y\) at the point \(( 1,2 )\), giving your answer in exact form.
  2. Show that all the stationary points of the curve lie on the \(y\)-axis.