Find stationary points

A question is this type if and only if it asks to find coordinates of points where dy/dx = 0 (tangent parallel to x-axis) on an implicitly defined curve.

60 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2006 June Q5
8 marks Standard +0.3
5 The equation of a curve is \(3 x ^ { 2 } + 2 x y + y ^ { 2 } = 6\). It is given that there are two points on the curve where the tangent is parallel to the \(x\)-axis.
  1. Show by differentiation that, at these points, \(y = - 3 x\).
  2. Hence find the coordinates of the two points.
CAIE P2 2008 June Q7
9 marks Standard +0.3
7 The equation of a curve is $$x ^ { 2 } + y ^ { 2 } - 4 x y + 3 = 0$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y - x } { y - 2 x }\).
  2. Find the coordinates of each of the points on the curve where the tangent is parallel to the \(x\)-axis.
CAIE P3 2008 June Q6
8 marks Standard +0.8
6 The equation of a curve is \(x y ( x + y ) = 2 a ^ { 3 }\), where \(a\) is a non-zero constant. Show that there is only one point on the curve at which the tangent is parallel to the \(x\)-axis, and find the coordinates of this point.
CAIE P3 2013 June Q5
6 marks Challenging +1.2
5 \includegraphics[max width=\textwidth, alt={}, center]{7c125770-1ded-4763-8453-b07ef43e83e9-2_446_601_1969_772} The diagram shows the curve with equation $$x ^ { 3 } + x y ^ { 2 } + a y ^ { 2 } - 3 a x ^ { 2 } = 0$$ where \(a\) is a positive constant. The maximum point on the curve is \(M\). Find the \(x\)-coordinate of \(M\) in terms of \(a\).
  1. By differentiating \(\frac { 1 } { \cos x }\), show that the derivative of \(\sec x\) is \(\sec x \tan x\). Hence show that if \(y = \ln ( \sec x + \tan x )\) then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec x\).
  2. Using the substitution \(x = ( \sqrt { } 3 ) \tan \theta\), find the exact value of $$\int _ { 1 } ^ { 3 } \frac { 1 } { \sqrt { \left( 3 + x ^ { 2 } \right) } } \mathrm { d } x$$ expressing your answer as a single logarithm.
CAIE P3 2016 June Q7
9 marks Standard +0.3
7 The equation of a curve is \(x ^ { 3 } - 3 x ^ { 2 } y + y ^ { 3 } = 3\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ^ { 2 } - 2 x y } { x ^ { 2 } - y ^ { 2 } }\).
  2. Find the coordinates of the points on the curve where the tangent is parallel to the \(x\)-axis.
CAIE P3 2016 March Q6
8 marks Challenging +1.2
6 A curve has equation $$\sin y \ln x = x - 2 \sin y$$ for \(- \frac { 1 } { 2 } \pi \leqslant y \leqslant \frac { 1 } { 2 } \pi\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Hence find the exact \(x\)-coordinate of the point on the curve at which the tangent is parallel to the \(x\)-axis.
CAIE P3 2006 November Q6
9 marks Standard +0.3
6 The equation of a curve is \(x ^ { 3 } + 2 y ^ { 3 } = 3 x y\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - x ^ { 2 } } { 2 y ^ { 2 } - x }\).
  2. Find the coordinates of the point, other than the origin, where the curve has a tangent which is parallel to the \(x\)-axis.
CAIE P3 2016 November Q4
7 marks Standard +0.8
4 The equation of a curve is \(x y ( x - 6 y ) = 9 a ^ { 3 }\), where \(a\) is a non-zero constant. Show that there is only one point on the curve at which the tangent is parallel to the \(x\)-axis, and find the coordinates of this point.
CAIE P3 2017 November Q5
8 marks Standard +0.3
5 The equation of a curve is \(2 x ^ { 4 } + x y ^ { 3 } + y ^ { 4 } = 10\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 8 x ^ { 3 } + y ^ { 3 } } { 3 x y ^ { 2 } + 4 y ^ { 3 } }\).
  2. Hence show that there are two points on the curve at which the tangent is parallel to the \(x\)-axis and find the coordinates of these points.
CAIE P3 2017 November Q6
8 marks Standard +0.8
6 The equation of a curve is \(x ^ { 3 } y - 3 x y ^ { 3 } = 2 a ^ { 4 }\), where \(a\) is a non-zero constant.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 x ^ { 2 } y - 3 y ^ { 3 } } { 9 x y ^ { 2 } - x ^ { 3 } }\).
  2. Hence show that there are only two points on the curve at which the tangent is parallel to the \(x\)-axis and find the coordinates of these points.
CAIE P3 2019 November Q5
7 marks Standard +0.8
5 The equation of a curve is \(2 x ^ { 2 } y - x y ^ { 2 } = a ^ { 3 }\), where \(a\) is a positive constant. Show that there is only one point on the curve at which the tangent is parallel to the \(x\)-axis and find the \(y\)-coordinate of this point.
CAIE P2 2016 March Q7
9 marks Standard +0.3
7 The equation of a curve is \(2 x ^ { 3 } + y ^ { 3 } = 24\).
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\), and show that the gradient of the curve is never positive.
  2. Find the coordinates of the two points on the curve at which the gradient is - 2 .
CAIE P2 2002 November Q7
9 marks Standard +0.3
7 The equation of a curve is $$2 x ^ { 2 } + 3 y ^ { 2 } - 2 x y = 10 .$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - 2 x } { 3 y - x }\).
  2. Find the coordinates of the points on the curve where the tangent is parallel to the \(x\)-axis.
CAIE P2 2012 November Q7
9 marks Standard +0.3
7 The equation of a curve is $$3 x ^ { 2 } - 4 x y + 2 y ^ { 2 } - 6 = 0$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 x - 2 y } { 2 x - 2 y }\).
  2. Find the coordinates of each of the points on the curve where the tangent is parallel to the \(x\)-axis.
CAIE P3 2022 June Q7
9 marks Standard +0.3
7 The equation of a curve is \(x ^ { 3 } + 3 x ^ { 2 } y - y ^ { 3 } = 3\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ^ { 2 } + 2 x y } { y ^ { 2 } - x ^ { 2 } }\).
  2. Find the coordinates of the points on the curve where the tangent is parallel to the \(x\)-axis.
CAIE P3 2021 November Q7
7 marks Standard +0.3
7 The equation of a curve is \(\ln ( x + y ) = x - 2 y\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x + y - 1 } { 2 ( x + y ) + 1 }\).
  2. Find the coordinates of the point on the curve where the tangent is parallel to the \(x\)-axis. \(\quad\) [3]
CAIE P3 2023 November Q7
8 marks Standard +0.3
7 The equation of a curve is \(x ^ { 3 } + y ^ { 2 } + 3 x ^ { 2 } + 3 y = 4\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 3 x ^ { 2 } + 6 x } { 2 y + 3 }\).
  2. Hence find the coordinates of the points on the curve at which the tangent is parallel to the \(x\)-axis. [5]
Edexcel C34 2019 January Q4
11 marks Standard +0.3
  1. The curve \(C\) has equation
$$81 y ^ { 3 } + 64 x ^ { 2 } y + 256 x = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Hence find the coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Edexcel C34 2017 October Q2
11 marks Standard +0.3
2. The curve \(C\) has equation $$y ^ { 3 } + x ^ { 2 } y - 6 x = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Hence find the exact coordinates of the points on \(C\) for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Edexcel C34 Specimen Q6
12 marks Standard +0.8
6. The curve \(C\) has equation $$16 y ^ { 3 } + 9 x ^ { 2 } y - 54 x = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Edexcel P4 2024 January Q3
9 marks Standard +0.3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6f577461-24b7-4615-b58b-e67597fd9675-08_815_849_248_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\), shown in Figure 1, has equation $$y ^ { 2 } x + 3 y = 4 x ^ { 2 } + k \quad y > 0$$ where \(k\) is a constant.
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\) The point \(P ( p , 2 )\), where \(p\) is a constant, lies on \(C\).
    Given that \(P\) is the minimum turning point on \(C\),
  2. find
    1. the value of \(p\)
    2. the value of \(k\)
Edexcel C4 2007 January Q5
7 marks Standard +0.3
5. A set of curves is given by the equation \(\sin x + \cos y = 0.5\).
  1. Use implicit differentiation to find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). For \(- \pi < x < \pi\) and \(- \pi < y < \pi\),
  2. find the coordinates of the points where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
Edexcel C4 2005 June Q2
7 marks Standard +0.3
2. A curve has equation $$x ^ { 2 } + 2 x y - 3 y ^ { 2 } + 16 = 0 .$$ Find the coordinates of the points on the curve where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
Edexcel C4 2012 June Q5
12 marks Standard +0.3
  1. The curve \(C\) has equation
$$16 y ^ { 3 } + 9 x ^ { 2 } y - 54 x = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
Edexcel C4 2014 June Q3
10 marks Standard +0.3
3. $$x ^ { 2 } + y ^ { 2 } + 10 x + 2 y - 4 x y = 10$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\), fully simplifying your answer.
  2. Find the values of \(y\) for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)