Edexcel P4 2024 January — Question 3

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2024
SessionJanuary
TopicImplicit equations and differentiation

3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6f577461-24b7-4615-b58b-e67597fd9675-08_815_849_248_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\), shown in Figure 1, has equation $$y ^ { 2 } x + 3 y = 4 x ^ { 2 } + k \quad y > 0$$ where \(k\) is a constant.
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\) The point \(P ( p , 2 )\), where \(p\) is a constant, lies on \(C\).
    Given that \(P\) is the minimum turning point on \(C\),
  2. find
    1. the value of \(p\)
    2. the value of \(k\)