Use Cayley-Hamilton for inverse

A question is this type if and only if it asks to use the Cayley-Hamilton theorem to find the inverse of a matrix expressed in terms of powers of the matrix.

6 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2022 June Q3
7 marks Standard +0.8
3 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 6 & - 9 & 5 \\ 5 & - 8 & 5 \\ 1 & - 1 & 2 \end{array} \right)$$
  1. Find the eigenvalues of \(\mathbf { A }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to show that \(\mathbf { A } ^ { - 1 } = p \mathbf { A } ^ { 2 } + q \mathbf { l }\), where \(p\) and \(q\) are constants to be determined.
OCR MEI FP2 2012 January Q3
18 marks Standard +0.3
3
  1. Show that the characteristic equation of the matrix $$\mathbf { M } = \left( \begin{array} { r r r } 3 & - 1 & 2 \\ - 4 & 3 & 2 \\ 2 & 1 & - 1 \end{array} \right)$$ is \(\lambda ^ { 3 } - 5 \lambda ^ { 2 } - 7 \lambda + 35 = 0\).
  2. Show that \(\lambda = 5\) is an eigenvalue of \(\mathbf { M }\), and find its other eigenvalues.
  3. Find an eigenvector, \(\mathbf { v }\), of unit length corresponding to \(\lambda = 5\). State the magnitudes and directions of the vectors \(\mathbf { M } ^ { 2 } \mathbf { v }\) and \(\mathbf { M } ^ { - 1 } \mathbf { v }\).
  4. Use the Cayley-Hamilton theorem to find the constants \(a , b , c\) such that $$\mathbf { M } ^ { 4 } = a \mathbf { M } ^ { 2 } + b \mathbf { M } + c \mathbf { I } .$$ Section B (18 marks)
OCR MEI Further Extra Pure 2022 June Q2
12 marks Standard +0.3
2 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r r } 10 & 12 & - 8 \\ - 1 & 2 & 4 \\ 3 & 6 & 2 \end{array} \right)\).
  1. In this question you must show detailed reasoning. Show that the characteristic equation of \(\mathbf { A }\) is \(- \lambda ^ { 3 } + 14 \lambda ^ { 2 } - 56 \lambda + 64 = 0\).
  2. Use the Cayley-Hamilton theorem to determine \(\mathbf { A } ^ { - 1 }\). A matrix \(\mathbf { E }\) and a diagonal matrix \(\mathbf { D }\) are such that \(\mathbf { A } = \mathbf { E D E } ^ { - 1 }\). The elements in the diagonal of \(\mathbf { D }\) increase from top left to bottom right.
  3. Determine the matrix \(\mathbf { D }\).
Edexcel FP2 AS 2019 June Q1
5 marks Moderate -0.3
  1. Given that
$$\mathbf { A } = \left( \begin{array} { l l } 3 & 2 \\ 2 & 2 \end{array} \right)$$
  1. find the characteristic equation for the matrix \(\mathbf { A }\), simplifying your answer.
  2. Hence find an expression for the matrix \(\mathbf { A } ^ { - 1 }\) in the form \(\lambda \mathbf { A } + \mu \mathbf { I }\), where \(\lambda\) and \(\mu\) are constants to be found.
Edexcel FP2 2020 June Q3
10 marks Standard +0.3
3. $$\mathbf { M } = \left( \begin{array} { r r r } 1 & k & - 2 \\ 2 & - 4 & 1 \\ 1 & 2 & 3 \end{array} \right)$$ where \(k\) is a constant.
  1. Show that, in terms of \(k\), a characteristic equation for \(\mathbf { M }\) is given by $$\lambda ^ { 3 } - ( 2 k + 13 ) \lambda + 5 ( k + 6 ) = 0$$ Given that \(\operatorname { det } \mathbf { M } = 5\)
    1. find the value of \(k\)
    2. use the Cayley-Hamilton theorem to find the inverse of \(\mathbf { M }\).
Edexcel FP2 2022 June Q2
8 marks Standard +0.3
  1. Matrix \(\mathbf { M }\) is given by
$$\mathbf { M } = \left( \begin{array} { r r r } 1 & 0 & a \\ - 3 & b & 1 \\ 0 & 1 & a \end{array} \right)$$ where \(a\) and \(b\) are integers, such that \(a < b\) Given that the characteristic equation for \(\mathbf { M }\) is $$\lambda ^ { 3 } - 7 \lambda ^ { 2 } + 13 \lambda + c = 0$$ where \(c\) is a constant,
  1. determine the values of \(a , b\) and \(c\).
  2. Hence, using the Cayley-Hamilton theorem, determine the matrix \(\mathbf { M } ^ { - 1 }\)