OCR MEI FP2 2012 January — Question 3

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionJanuary
TopicInvariant lines and eigenvalues and vectors

3
  1. Show that the characteristic equation of the matrix $$\mathbf { M } = \left( \begin{array} { r r r } 3 & - 1 & 2
    - 4 & 3 & 2
    2 & 1 & - 1 \end{array} \right)$$ is \(\lambda ^ { 3 } - 5 \lambda ^ { 2 } - 7 \lambda + 35 = 0\).
  2. Show that \(\lambda = 5\) is an eigenvalue of \(\mathbf { M }\), and find its other eigenvalues.
  3. Find an eigenvector, \(\mathbf { v }\), of unit length corresponding to \(\lambda = 5\). State the magnitudes and directions of the vectors \(\mathbf { M } ^ { 2 } \mathbf { v }\) and \(\mathbf { M } ^ { - 1 } \mathbf { v }\).
  4. Use the Cayley-Hamilton theorem to find the constants \(a , b , c\) such that $$\mathbf { M } ^ { 4 } = a \mathbf { M } ^ { 2 } + b \mathbf { M } + c \mathbf { I } .$$ Section B (18 marks)