Edexcel FP2 2020 June — Question 3

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2020
SessionJune
TopicInvariant lines and eigenvalues and vectors

3. $$\mathbf { M } = \left( \begin{array} { r r r } 1 & k & - 2
2 & - 4 & 1
1 & 2 & 3 \end{array} \right)$$ where \(k\) is a constant.
  1. Show that, in terms of \(k\), a characteristic equation for \(\mathbf { M }\) is given by $$\lambda ^ { 3 } - ( 2 k + 13 ) \lambda + 5 ( k + 6 ) = 0$$ Given that \(\operatorname { det } \mathbf { M } = 5\)
    1. find the value of \(k\)
    2. use the Cayley-Hamilton theorem to find the inverse of \(\mathbf { M }\).