Solve |quadratic| compared to linear

Solve equation or inequality involving modulus of quadratic expression compared to linear expression, e.g. |x²-9| < |1-2x| or |(x-2)(x-4)| = 6-2x.

15 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
Edexcel F2 2021 January Q3
7 marks Standard +0.8
3. Use algebra to obtain the set of values of \(x\) for which $$\left| x ^ { 2 } + x - 2 \right| < \frac { 1 } { 2 } ( x + 5 )$$
Edexcel F2 2022 January Q3
11 marks Standard +0.8
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0d458344-42cb-48d1-90b3-e071df8ea7bb-08_693_987_116_482} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C _ { 1 }\) with equation $$y = \frac { 4 x } { 4 - | x | }$$ and the curve \(C _ { 2 }\) with equation $$y = x ^ { 2 } - 8 x$$ For \(x > 0 , C _ { 1 }\) has equation \(y = \frac { 4 x } { 4 - x }\)
  1. Use algebra to show that \(C _ { 1 }\) touches \(C _ { 2 }\) at a point \(P\), stating the coordinates of \(P\)
  2. Hence or otherwise, using algebra, solve the inequality $$x ^ { 2 } - 8 x > \frac { 4 x } { 4 - | x | }$$
Edexcel F2 2023 January Q5
6 marks Challenging +1.2
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
Use algebra to determine the set of values of \(x\) for which $$\frac { x ^ { 2 } - 9 } { | x + 8 | } > 6 - 2 x$$
Edexcel F2 2016 June Q2
6 marks Standard +0.8
2. Use algebra to find the set of values of \(x\) for which $$\left| x ^ { 2 } - 9 \right| < | 1 - 2 x |$$
Edexcel F2 2020 June Q3
9 marks Challenging +1.2
3. Use algebra to obtain the set of values of \(x\) for which $$\left| \frac { x ^ { 2 } + 3 x + 10 } { x + 2 } \right| < 7 - x$$
Edexcel F2 2021 June Q5
7 marks Standard +0.8
  1. Use algebra to find the set of values of \(x\) for which
$$\left| 2 x ^ { 2 } + x - 3 \right| > 3 ( 1 - x )$$ [Solutions based entirely on graphical or numerical methods are not acceptable.] \includegraphics[max width=\textwidth, alt={}, center]{0d44aec7-a6e8-47fc-a215-7c8c4790e93f-21_2647_1840_118_111}
Edexcel FP2 2004 June Q6
7 marks Standard +0.8
6. Find the complete set of values of \(x\) for which $$\left| x ^ { 2 } - 2 \right| > 2 x$$
Edexcel FP2 2007 June Q2
9 marks Standard +0.8
2. \includegraphics[max width=\textwidth, alt={}, center]{d6befd60-de40-41b6-8ae5-48656dbca40c-1_734_1228_888_479} The diagram above shows a sketch of the curve with equation $$y = \frac { x ^ { 2 } - 1 } { | x + 2 | } , \quad x \neq - 2$$ The curve crosses the \(x\)-axis at \(x = 1\) and \(x = - 1\) and the line \(x = - 2\) is an asymptote of the curve.
  1. Use algebra to solve the equation \(\frac { x ^ { 2 } - 1 } { | x + 2 | } = 3 ( 1 - x )\).
  2. Hence, or otherwise, find the set of values of \(x\) for which $$\frac { x ^ { 2 } - 1 } { | x + 2 | } < 3 ( 1 - x )$$ (Total 9 marks)
Edexcel FP2 2012 June Q1
5 marks Standard +0.8
  1. Find the set of values of \(x\) for which
$$\left| x ^ { 2 } - 4 \right| > 3 x$$
Edexcel FP2 2014 June Q2
6 marks Standard +0.8
2. Use algebra to find the set of values of \(x\) for which $$\left| 3 x ^ { 2 } - 19 x + 20 \right| < 2 x + 2$$
Edexcel FP2 2018 June Q4
7 marks Challenging +1.2
4. Use algebra to find the set of values of \(x\) for which $$\left| x ^ { 2 } - 2 \right| > 4 x$$
AQA C3 2008 January Q7
12 marks Standard +0.3
7
  1. Describe a sequence of two geometrical transformations that maps the graph of \(y = x ^ { 2 }\) onto the graph of \(y = 4 x ^ { 2 } - 5\).
  2. Sketch the graph of \(y = \left| 4 x ^ { 2 } - 5 \right|\), indicating the coordinates of the point where the curve crosses the \(y\)-axis.
    1. Solve the equation \(\left| 4 x ^ { 2 } - 5 \right| = 4\).
    2. Hence, or otherwise, solve the inequality \(\left| 4 x ^ { 2 } - 5 \right| \geqslant 4\).
AQA C3 2009 June Q4
12 marks Standard +0.3
4
  1. Sketch the graph of \(y = \left| 50 - x ^ { 2 } \right|\), indicating the coordinates of the point where the graph crosses the \(y\)-axis.
  2. Solve the equation \(\left| 50 - x ^ { 2 } \right| = 14\).
  3. Hence, or otherwise, solve the inequality \(\left| 50 - x ^ { 2 } \right| > 14\).
  4. Describe a sequence of two geometrical transformations that maps the graph of \(y = x ^ { 2 }\) onto the graph of \(y = 50 - x ^ { 2 }\).
AQA C3 2016 June Q3
5 marks Standard +0.8
3 Solve $$x ^ { 2 } \geqslant | 5 x - 6 |$$ [5 marks]
AQA Further Paper 2 2024 June Q15
7 marks Standard +0.8
15 The diagram shows the line \(y = 5 - x\) \includegraphics[max width=\textwidth, alt={}, center]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-18_1255_1125_349_440} 15
  1. On the diagram above, sketch the graph of \(y = \left| x ^ { 2 } - 4 x \right|\), including all parts of the graph where it intersects the line \(y = 5 - x\) (You do not need to show the coordinates of the points of intersection.) 15
  2. Find the solution of the inequality $$\left| x ^ { 2 } - 4 x \right| > 5 - x$$ Give your answer in an exact form.
    [0pt] [4 marks]