Prove summation formula

A question is this type if and only if it asks to prove by induction that a summation equals a given closed-form expression (e.g., ∑r² = n(n+1)(2n+1)/6).

34 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
Edexcel C1 Q8
9 marks Moderate -0.3
  1. (a) Prove that the sum of the first \(n\) positive integers is given by
$$\frac { 1 } { 2 } n ( n + 1 ) .$$ (b) Hence, find the sum of
  1. the integers from 100 to 200 inclusive,
  2. the integers between 300 to 600 inclusive which are divisible by 3 .
AQA FP2 2011 June Q6
8 marks Standard +0.3
6
  1. Show that $$( k + 1 ) \left( 4 ( k + 1 ) ^ { 2 } - 1 \right) = 4 k ^ { 3 } + 12 k ^ { 2 } + 11 k + 3$$
  2. Prove by induction that, for all integers \(n \geqslant 1\), $$1 ^ { 2 } + 3 ^ { 2 } + 5 ^ { 2 } + \ldots + ( 2 n - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
OCR MEI Further Pure Core 2020 November Q7
6 marks Standard +0.3
7 Prove by mathematical induction that \(\sum _ { r = 1 } ^ { n } ( r \times r ! ) = ( n + 1 ) ! - 1\) for all positive integers \(n\).
Edexcel CP AS 2021 June Q8
9 marks Standard +0.8
  1. (a) Prove by induction that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( 2 r + 1 ) = \frac { 1 } { 2 } n ( n + 1 ) ^ { 2 } ( n + 2 )$$ (b) Hence, show that, for all positive integers \(n\), $$\sum _ { r = n } ^ { 2 n } r ( r + 1 ) ( 2 r + 1 ) = \frac { 1 } { 2 } n ( n + 1 ) ( a n + b ) ( c n + d )$$ where \(a\), \(b\), \(c\) and \(d\) are integers to be determined.
Edexcel CP1 2020 June Q6
12 marks Standard +0.3
  1. (i) Prove by induction that for \(n \in \mathbb { Z } ^ { + }\)
$$\sum _ { r = 1 } ^ { n } ( 3 r + 1 ) ( r + 2 ) = n ( n + 2 ) ( n + 3 )$$ (ii) Prove by induction that for all positive odd integers \(n\) $$f ( n ) = 4 ^ { n } + 5 ^ { n } + 6 ^ { n }$$ is divisible by 15
Edexcel CP1 2024 June Q6
6 marks Standard +0.3
  1. Prove by induction that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
Edexcel FP1 Q5
4 marks Standard +0.3
5. Prove that $$\sum _ { r = 1 } ^ { n } 6 \left( r ^ { 2 } - 1 \right) \equiv ( n - 1 ) n ( 2 n + 5 )$$
AQA FP2 2008 January Q5
7 marks Standard +0.8
5 Prove by induction that for all integers \(n \geqslant 1\) $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + 1 \right) ( r ! ) = n ( n + 1 ) !$$
AQA Further Paper 2 2022 June Q5
4 marks Standard +0.3
5 Prove by induction that, for all integers \(n \geq 1\), $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \left\{ \frac { 1 } { 2 } n ( n + 1 ) \right\} ^ { 2 }$$ [4 marks]