Tangent plane equation at a point

A question is this type if and only if it asks to find the equation of the tangent plane to a surface at a specified point.

4 questions · Standard +0.9

Sort by: Default | Easiest first | Hardest first
OCR Further Additional Pure 2022 June Q1
6 marks Standard +0.8
1 The surface \(E\) has equation \(z = \sqrt { 500 - 3 x ^ { 2 } - 2 y ^ { 2 } }\).
  1. Determine the values of \(\frac { \partial z } { \partial x }\) and \(\frac { \partial z } { \partial y }\) at the point \(P\) on \(E\) with coordinates \(( 11 , - 8,3 )\).
  2. Find the equation of the tangent plane to \(E\) at \(P\), giving your answer in the form \(\mathrm { ax } + \mathrm { by } + \mathrm { cz } = \mathrm { d }\) where \(a , b , c\) and \(d\) are integers.
OCR Further Additional Pure 2024 June Q2
5 marks Standard +0.8
2 A surface \(S\) has equation \(\mathrm { z } = 4 \mathrm { x } \sqrt { \mathrm { y } } - \mathrm { y } \sqrt { \mathrm { x } } + \mathrm { y } ^ { 2 }\) for \(x , y \geqslant 0\). Determine the equation of the tangent plane to \(S\) at the point (1,4,20). Give your answer in the form \(\mathrm { ax } + \mathrm { by } + \mathrm { cz } = \mathrm { d }\) where \(a , b , c\) and \(d\) are integers.
OCR Further Additional Pure 2018 March Q3
10 marks Challenging +1.2
3 The surface \(S\) has equation \(z = \frac { x } { y } \sin y + \frac { y } { x } \cos x\) where \(0 < x \leqslant \pi\) and \(0 < y \leqslant \pi\).
  1. Find
    • \(\frac { \partial z } { \partial x }\),
    • \(\frac { \partial z } { \partial y }\).
    • Determine the equation of the tangent plane to \(S\) at the point \(A\) where \(x = y = \frac { 1 } { 4 } \pi\). Give your answer in the form \(a x + b y + c z = d\) where \(a , b , c\) and \(d\) are exact constants.
    • Write down a normal vector to \(S\) at \(A\).
OCR Further Additional Pure 2018 December Q1
7 marks Standard +0.8
1 A surface has equation \(z = x \tan y\) for \(- \frac { 1 } { 2 } \pi < y < \frac { 1 } { 2 } \pi\).
  1. Find
    • \(\frac { \partial z } { \partial x }\),
    • \(\frac { \partial z } { \partial y }\).
    • Find in cartesian form, the equation of the tangent plane to the surface at the point where \(x = 1\) and \(y = \frac { 1 } { 4 } \pi\).