CAIE
Further Paper 2
2020
November
Q7
7 marks
Challenging +1.2
7
- Show that \(\sum _ { r = 1 } ^ { n } z ^ { 2 r } = \frac { z ^ { 2 n + 1 } - z } { z - z ^ { - 1 } }\), for \(z \neq 0,1 , - 1\).
- By letting \(z = \cos \theta + i \sin \theta\), show that, if \(\sin \theta \neq 0\),
$$1 + 2 \sum _ { r = 1 } ^ { n } \cos ( 2 r \theta ) = \frac { \sin ( 2 n + 1 ) \theta } { \sin \theta }$$