Particle brought to rest by collision

A question is this type if and only if one particle is brought to rest (zero velocity) as a result of a collision, often requiring finding coefficient of restitution or other parameters.

7 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
Edexcel M2 2014 June Q6
14 marks Standard +0.3
6. Three particles \(P , Q\) and \(R\) have masses \(3 m , k m\) and 7.5m respectively. The three particles lie at rest in a straight line on a smooth horizontal table with \(Q\) between \(P\) and \(R\). Particle \(P\) is projected towards \(Q\) with speed \(u\) and collides directly with \(Q\). The coefficient of restitution between \(P\) and \(Q\) is \(\frac { 1 } { 9 }\).
  1. Show that the speed of \(Q\) immediately after the collision is \(\frac { 10 u } { 3 ( 3 + k ) }\).
  2. Find the range of values of \(k\) for which the direction of motion of \(P\) is reversed as a result of the collision. Following the collision between \(P\) and \(Q\) there is a collision between \(Q\) and \(R\). Given that \(k = 7\) and that \(Q\) is brought to rest by the collision with \(R\),
  3. find the total kinetic energy lost in the collision between \(Q\) and \(R\).
Edexcel M2 2004 January Q6
14 marks Moderate -0.3
6. A smooth sphere \(A\) of mass \(m\) is moving with speed \(u\) on a smooth horizontal table when it collides directly with another smooth sphere \(B\) of mass \(3 m\), which is at rest on the table. The coefficient of restitution between \(A\) and \(B\) is \(e\). The spheres have the same radius and are modelled as particles.
  1. Show that the speed of \(B\) immediately after the collision is \(\frac { 1 } { 4 } ( 1 + e ) u\).
  2. Find the speed of \(A\) immediately after the collision. Immediately after the collision the total kinetic energy of the spheres is \(\frac { 1 } { 6 } m u ^ { 2 }\).
  3. Find the value of \(e\).
  4. Hence show that \(A\) is at rest after the collision.
Edexcel M2 Q5
9 marks Standard +0.3
5. A smooth sphere \(S\) of mass \(m\) is moving with speed \(u\) on a smooth horizontal plane. The sphere \(S\) collides with another smooth sphere \(T\), of equal radius to \(S\) but of mass \(k m\), moving in the same straight line and in the same direction with speed \(\lambda u , 0 < \lambda < \frac { 1 } { 2 }\). The coefficient of restitution between \(S\) and \(T\) is \(e\). Given that \(S\) is brought to rest by the impact,
  1. show that \(e = \frac { 1 + k \lambda } { k ( 1 - \lambda ) }\).
  2. Deduce that \(k > 1\).
CAIE FP2 2010 November Q3
8 marks Standard +0.3
3 Two smooth spheres \(A\) and \(B\), of equal radius, are moving in the same direction in the same straight line on a smooth horizontal table. Sphere \(A\) has mass \(m\) and speed \(u\) and sphere \(B\) has mass \(\alpha m\) and speed \(\frac { 1 } { 4 } u\). The spheres collide and \(A\) is brought to rest by the collision. Find the coefficient of restitution in terms of \(\alpha\). Deduce that \(\alpha \geqslant 2\).
CAIE FP2 2011 November Q4
11 marks Standard +0.8
4 Two smooth spheres \(P\) and \(Q\), of equal radius, have masses \(m\) and \(3 m\) respectively. They are moving in the same direction in the same straight line on a smooth horizontal table. Sphere \(P\) has speed \(u\) and collides directly with sphere \(Q\) which has speed \(k u\), where \(0 < k < 1\). Sphere \(P\) is brought to rest by the collision. Show that the coefficient of restitution between \(P\) and \(Q\) is \(\frac { 3 k + 1 } { 3 ( 1 - k ) }\). One third of the total kinetic energy of the spheres is lost in the collision. Show that $$k = \frac { 1 } { 3 } ( 2 \sqrt { } 3 - 3 )$$
Edexcel M2 Q7
16 marks Standard +0.8
7. Two smooth spheres, \(A\) and \(B\), of equal radius but of masses \(3 m\) and \(4 m\) respectively, are free to move in a straight horizontal groove. The coefficient of restitution between them is \(e\). \(A\) is projected with speed \(u\) to hit \(B\), which is initially at rest.
  1. Show that \(B\) begins to move with speed \(\frac { 3 } { 7 } u ( 1 + e )\).
  2. Given that \(A\) is brought to rest by the collision, show that \(e = 0.75\). Having been brought to rest, \(A\) is now set in motion again by being given an impulse of magnitude \(k m u \mathrm { Ns }\), where \(k > 2 \cdot 25\). A then collides again with \(B\).
  3. Show that the speed of \(A\) after this second impact is independent of \(k\).
Edexcel FM1 AS 2020 June Q1
5 marks Standard +0.3
  1. Two particles \(P\) and \(Q\) have masses \(m\) and \(4 m\) respectively. The particles are at rest on a smooth horizontal plane. Particle \(P\) is given a horizontal impulse, of magnitude \(I\), in the direction \(P Q\). Particle \(P\) then collides directly with \(Q\). Immediately after this collision, \(P\) is at rest and \(Q\) has speed \(w\). The coefficient of restitution between the particles is \(e\).
    1. Find \(I\) in terms of \(m\) and \(w\).
    2. Show that \(e = \frac { 1 } { 4 }\)
    3. Find, in terms of \(m\) and \(w\), the total kinetic energy lost in the collision between \(P\) and \(Q\).