Direct collision with given impulse

A question is this type if and only if two particles collide directly and the magnitude of the impulse on one particle is given, requiring use of impulse-momentum to find speeds or coefficient of restitution.

14 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
Edexcel M2 2022 June Q6
12 marks Standard +0.3
6. Two particles, \(P\) and \(Q\), are moving in opposite directions along the same straight line on a smooth horizontal surface so that the particles collide directly.
The mass of \(P\) is \(k m\) and the mass of \(Q\) is \(m\).
Immediately before the collision, the speed of \(P\) is \(x\) and the speed of \(Q\) is \(y\). Immediately after the collision, \(P\) and \(Q\) are moving in the same direction, the speed of \(P\) is \(v\) and the speed of \(Q\) is \(2 v\). The coefficient of restitution between \(P\) and \(Q\) is \(\frac { 1 } { 5 }\)
The magnitude of the impulse received by \(Q\) in the collision is \(5 m v\)
  1. Find (i) \(y\) in terms of \(v\)
    (ii) \(x\) in terms of \(v\)
    (iii) the value of \(k\)
  2. Find, in terms of \(m\) and \(v\), the total kinetic energy lost in the collision between \(P\) and \(Q\).
Edexcel M2 2023 June Q4
12 marks Standard +0.3
  1. A particle \(P\) of mass \(3 m\) and a particle \(Q\) of mass \(5 m\) are moving towards each other along the same straight line on a smooth horizontal surface. The particles collide directly.
Immediately before the collision, the speed of \(P\) is \(u\) and the speed of \(Q\) is \(k u\).
Immediately after the collision, the speed of \(P\) is \(2 v\) and the speed of \(Q\) is \(v\).
The direction of motion of each particle is reversed by the collision.
In the collision, \(P\) receives an impulse of magnitude \(15 m v\).
  1. Show that \(u = 3 v\).
  2. Find the value of \(k\). The coefficient of restitution between \(P\) and \(Q\) is \(e\).
  3. Find the value of \(e\). The total kinetic energy lost in the collision is \(\lambda m v ^ { 2 }\)
  4. Find the value of \(\lambda\).
CAIE FP2 2012 June Q2
6 marks Standard +0.3
2 Two particles, of masses \(3 m\) and \(m\), are moving in the same straight line towards each other with speeds \(2 u\) and \(u\) respectively. When they collide, the impulse acting on each particle has magnitude \(4 m u\). Show that the total loss in kinetic energy is \(\frac { 4 } { 3 } m u ^ { 2 }\).
OCR Further Mechanics AS 2022 June Q2
7 marks Standard +0.3
2 A hockey puck of mass 0.2 kg is sliding down a rough slope which is inclined at \(10 ^ { \circ }\) to the horizontal. At the instant that its velocity is \(14 \mathrm {~ms} ^ { - 1 }\) directly down the slope it is hit by a hockey stick. Immediately after it is hit its velocity is \(24 \mathrm {~ms} ^ { - 1 }\) directly up the slope.
  1. Find the magnitude of the impulse exerted by the hockey stick on the puck. After it has been hit, the puck first comes to instantaneous rest when it has travelled 15 m up the slope. While the puck is moving up the slope, the resistance to its motion has constant magnitude \(R \mathrm {~N}\).
  2. Use an energy method to determine the value of \(R\).
OCR Further Mechanics AS 2023 June Q1
4 marks Standard +0.3
1 Two particles \(A\), of mass \(m \mathrm {~kg}\), and \(B\), of mass \(3 m \mathrm {~kg}\), are connected by a light inextensible string and placed together at rest on a smooth horizontal surface with the string slack. \(A\) is projected along the surface, directly away from \(B\), with a speed of \(2.4 \mathrm {~ms} ^ { - 1 }\).
  1. Find the speed of \(B\) immediately after the string becomes taut.
  2. Find, in terms of \(m\), the magnitude of the impulse exerted on \(B\) as a result of the string becoming taut.
OCR MEI M2 2008 June Q1
17 marks Moderate -0.8
1
  1. Disc A of mass 6 kg and disc B of mass 0.5 kg are moving in the same straight line. The relative positions of the discs and the \(\mathbf { i }\) direction are shown in Fig. 1.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{130d0f63-83ac-484f-9c0b-a633e0d87743-2_282_1325_402_450} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure} The discs collide directly. The impulse on A in the collision is \(- 12 \mathbf { i }\) Ns and after the collision A has velocity \(3 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and B has velocity \(11 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
    1. Show that the velocity of A just before the collision is \(5 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and find the velocity of B at this time.
    2. Calculate the coefficient of restitution in the collision.
    3. After the collision, a force of \(- 2 \mathbf { i } \mathrm {~N}\) acts on B for 7 seconds. Find the velocity of B after this time.
  2. A ball bounces off a smooth plane. The angles its path makes with the plane before and after the impact are \(\alpha\) and \(\beta\), as shown in Fig. 1.2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{130d0f63-83ac-484f-9c0b-a633e0d87743-2_317_1082_1468_575} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
    \end{figure} The velocity of the ball before the impact is \(u \mathbf { i } - v \mathbf { j }\) and the coefficient of restitution in the impact is \(e\). Write down an expression in terms of \(u , v , e , \mathbf { i }\) and \(\mathbf { j }\) for the velocity of the ball immediately after the impact. Hence show that \(\tan \beta = e \tan \alpha\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{130d0f63-83ac-484f-9c0b-a633e0d87743-3_581_486_274_383} \captionsetup{labelformat=empty} \caption{Fig. 2.1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{130d0f63-83ac-484f-9c0b-a633e0d87743-3_593_392_264_1370} \captionsetup{labelformat=empty} \caption{Fig. 2.2}
    \end{figure} A uniform wire is bent to form a bracket OABCD . The sections \(\mathrm { OA } , \mathrm { AB }\) and BC lie on three sides of a square and CD is parallel to AB . This is shown in Fig. 2.1 where the dimensions, in centimetres, are also given.
    1. Show that, referred to the axes shown in Fig. 2.1, the \(x\)-coordinate of the centre of mass of the bracket is 3.6 . Find also the \(y\)-coordinate of its centre of mass.
    2. The bracket is now freely suspended from D and hangs in equilibrium. Draw a diagram showing the position of the centre of mass and calculate the angle of CD to the vertical.
    3. The bracket is now hung by means of vertical, light strings BP and DQ attached to B and to D , as shown in Fig. 2.2. The bracket has weight 5 N and is in equilibrium with OA horizontal. Calculate the tensions in the strings BP and DQ . The original bracket shown in Fig. 2.1 is now changed by adding the section OE, where AOE is a straight line. This section is made of the same type of wire and has length \(L \mathrm {~cm}\), as shown in Fig. 2.3.
      \(\begin{array} { l l l l } \begin{array} { l } \text { not to } \\ \text { scale } \end{array} & 2 & 6 & \\ \mathrm {~L} \longrightarrow & \mathrm {~L} & & \\ \mathrm {~L} & \mathrm { O } & 6 & \mathrm {~A} \end{array}\) Fig. 2.3 The value of \(L\) is chosen so that the centre of mass is now on the \(y\)-axis.
    4. Calculate \(L\).
OCR MEI M2 2010 June Q1
17 marks Moderate -0.3
1 Two sledges P and Q, with their loads, have masses of 200 kg and 250 kg respectively and are sliding on a horizontal surface against negligible resistance. There is an inextensible light rope connecting the sledges that is horizontal and parallel to the direction of motion. Fig. 1 shows the initial situation with both sledges travelling with a velocity of \(5 \mathbf { i m ~ } \mathbf { m } ^ { - 1 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1a605f0b-f595-4bb9-9624-f816c789ad86-2_397_1379_520_383} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} A mechanism on Q jerks the rope so that there is an impulse of \(250 \mathbf { i N s }\) on P .
  1. Show that the new velocity of \(P\) is \(6.25 \mathrm { i } \mathrm { m } \mathrm { s } ^ { - 1 }\) and find the new velocity of \(Q\). There is now a direct collision between the sledges and after the impact P has velocity \(4.5 \mathrm { i } \mathrm { m } \mathrm { s } ^ { - 1 }\).
  2. Show that the velocity of Q becomes \(5.4 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Calculate the coefficient of restitution in the collision. Before the rope becomes taut again, the velocity of P is increased so that it catches up with Q . This is done by throwing part of the load from sledge P in the \(- \mathbf { i }\) direction so that P 's velocity increases to \(5.5 \mathrm { i } \mathrm { m } \mathrm { s } ^ { - 1 }\). The part of the load thrown out is an object of mass 20 kg .
  3. Calculate the speed of separation of the object from P . When the sledges directly collide again they are held together and move as a single object.
  4. Calculate the common velocity of the pair of sledges, giving your answer correct to 3 significant figures. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1a605f0b-f595-4bb9-9624-f816c789ad86-3_987_524_258_769} \captionsetup{labelformat=empty} \caption{not to scale he lengths are}
    \end{figure} Fig. 2 Fig. 2 shows a stand on a horizontal floor and horizontal and vertical coordinate axes \(\mathrm { O } x\) and \(\mathrm { O } y\). The stand is modelled as
    • a thin uniform rectangular base PQRS, 30 cm by 40 cm with mass 15 kg ; the sides QR and PS are parallel to \(\mathrm { O } x\),
    • a thin uniform vertical rod of length 200 cm and mass 3 kg that is fixed to the base at O , the mid-point of PQ and the origin of coordinates,
    • a thin uniform top rod AB of length 50 cm and mass \(2 \mathrm {~kg} ; \mathrm { AB }\) is parallel to \(\mathrm { O } x\).
    Coordinates are referred to the axes shown in the figure.
WJEC Further Unit 3 2022 June Q3
10 marks Standard +0.3
3. Two spheres \(A\) and \(B\), of equal radii, are moving towards each other on a smooth horizontal surface and collide directly. Sphere \(A\) has mass \(4 m \mathrm {~kg}\) and sphere \(B\) has mass \(3 m \mathrm {~kg}\). Just before the collision, \(A\) has speed \(9 \mathrm {~ms} ^ { - 1 }\) and \(B\) has speed \(3.5 \mathrm {~ms} ^ { - 1 }\). Immediately after the collision, \(A\) has speed \(1.5 \mathrm {~ms} ^ { - 1 }\) in the direction of its original motion.
  1. Show that the speed of \(B\) immediately after the collision is \(6.5 \mathrm {~ms} ^ { - 1 }\).
  2. Calculate the coefficient of restitution between \(A\) and \(B\).
  3. Given that the magnitude of the impulse exerted by \(B\) on \(A\) is 36 Ns , find the value of \(m\).
  4. Give a reason why it is not necessary to model the spheres as particles in this question.
WJEC Further Unit 3 2024 June Q1
14 marks Standard +0.3
1. Two particles \(A\) and \(B\), of masses 2 kg and 5 kg respectively, are moving in the same direction along a smooth horizontal surface when they collide directly. Before the collision, \(B\) is moving with speed \(1.2 \mathrm {~ms} ^ { - 1 }\) and, immediately after the collision, its speed is \(3.8 \mathrm {~ms} ^ { - 1 }\). The coefficient of restitution between the particles \(A\) and \(B\) is 0.3 .
    1. Find the impulse exerted by \(A\) on \(B\).
    2. Given that the particles \(A\) and \(B\) were in contact for 0.08 seconds, find the average force between \(A\) and \(B\).
      [0pt] [4]
      \end{tabular} & Examiner only
      \hline \end{tabular} \end{center}
  1. Calculate the speed of \(A\) before and after the collision.
  2. After the collision between \(A\) and \(B\), particle \(B\) continues to move with speed \(3.8 \mathrm {~ms} ^ { - 1 }\) until it collides directly with a stationary particle \(C\) of mass 4 kg . When \(B\) and \(C\) collide, they coalesce to form a single particle.
    1. Write down the coefficient of restitution between \(B\) and \(C\).
    2. Determine the speed of the combined particle after the collision.
      \section*{PLEASE DO NOT WRITE ON THIS PAGE}
Edexcel FM1 AS 2019 June Q2
13 marks Standard +0.3
  1. Two particles, \(A\) and \(B\), of masses \(2 m\) and \(3 m\) respectively, are moving on a smooth horizontal plane. The particles are moving in opposite directions towards each other along the same straight line when they collide directly. Immediately before the collision the speed of \(A\) is \(2 u\) and the speed of \(B\) is \(u\). In the collision the impulse of \(A\) on \(B\) has magnitude 5 mu .
    1. Find the coefficient of restitution between \(A\) and \(B\).
    2. Find the total loss in kinetic energy due to the collision.
Edexcel FM1 AS 2021 June Q4
13 marks Standard +0.8
  1. Two particles, \(P\) and \(Q\), have masses \(m\) and \(e m\) respectively. The particles are moving on a smooth horizontal plane in the same direction along the same straight line when they collide directly. The coefficient of restitution between \(P\) and \(Q\) is \(e\), where \(0 < e < 1\)
Immediately before the collision the speed of \(P\) is \(u\) and the speed of \(Q\) is \(e u\).
  1. Show that the speed of \(Q\) immediately after the collision is \(u\).
  2. Show that the direction of motion of \(P\) is unchanged by the collision. The magnitude of the impulse on \(Q\) in the collision is \(\frac { 2 } { 9 } m u\)
  3. Find the possible values of \(e\).
Edexcel FM1 AS 2022 June Q2
8 marks Standard +0.3
  1. Two particles, \(A\) and \(B\), have masses \(m\) and \(3 m\) respectively. The particles are moving in opposite directions along the same straight line on a smooth horizontal plane when they collide directly.
Immediately before they collide, \(A\) is moving with speed \(2 u\) and \(B\) is moving with speed \(u\). The direction of motion of each particle is reversed by the collision.
In the collision, the magnitude of the impulse exerted on \(A\) by \(B\) is \(\frac { 9 m u } { 2 }\)
  1. Find the value of the coefficient of restitution between \(A\) and \(B\).
  2. Hence, write down the total loss in kinetic energy due to the collision, giving a reason for your answer.
Edexcel FM1 AS 2023 June Q1
8 marks Standard +0.3
  1. Two particles, \(P\) and \(Q\), of masses \(3 m\) and \(2 m\) respectively, are moving on a smooth horizontal plane. They are moving in opposite directions along the same straight line when they collide directly.
Immediately before the collision, \(P\) is moving with speed \(2 u\).
The magnitude of the impulse exerted on \(P\) by \(Q\) in the collision is \(\frac { 9 m u } { 2 }\)
  1. Find the speed of \(P\) immediately after the collision. The coefficient of restitution between \(P\) and \(Q\) is \(e\).
    Given that the speed of \(Q\) immediately before the collision is \(u\),
  2. find the value of \(e\).
Edexcel FM1 2022 June Q1
8 marks Standard +0.3
  1. A particle \(A\) of mass \(3 m\) and a particle \(B\) of mass \(m\) are moving along the same straight line on a smooth horizontal surface. The particles are moving in opposite directions towards each other when they collide directly.
Immediately before the collision, the speed of \(A\) is \(k u\) and the speed of \(B\) is \(u\). Immediately after the collision, the speed of \(A\) is \(v\) and the speed of \(B\) is \(2 v\). The magnitude of the impulse received by \(B\) in the collision is \(\frac { 3 } { 2 } m u\).
  1. Find \(v\) in terms of \(u\) only.
  2. Find the two possible values of \(k\).