Find dy/dx at a point

A question is this type if and only if it asks to find the gradient or dy/dx at a specific point on a parametric curve, given either a parameter value or coordinates.

27 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
CAIE P2 2021 June Q4
8 marks Standard +0.3
4 A curve has parametric equations $$x = \ln ( 2 t + 6 ) - \ln t , \quad y = t \ln t$$
  1. Find the value of \(t\) at the point \(P\) on the curve for which \(x = \ln 4\).
  2. Find the exact gradient of the curve at \(P\).
CAIE P2 2021 March Q3
5 marks Moderate -0.3
3 The parametric equations of a curve are $$x = \mathrm { e } ^ { 2 t } \cos 4 t , \quad y = 3 \sin 2 t$$ Find the gradient of the curve at the point for which \(t = 0\).
CAIE P2 2024 November Q6
7 marks Standard +0.3
6 A curve has parametric equations $$x = \frac { \mathrm { e } ^ { 2 t } - 2 } { \mathrm { e } ^ { 2 t } + 1 } , \quad y = \mathrm { e } ^ { 3 t } + 1$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\). \includegraphics[max width=\textwidth, alt={}, center]{dcc483e9-630e-4f02-ad8c-4a27c0720fc6-10_2718_42_107_2007} \includegraphics[max width=\textwidth, alt={}, center]{dcc483e9-630e-4f02-ad8c-4a27c0720fc6-11_2725_35_99_20}
  2. Find the exact gradient of the curve at the point where the curve crosses the \(y\)-axis.
CAIE P2 2024 November Q6
7 marks Standard +0.3
6 A curve has parametric equations $$x = \frac { \mathrm { e } ^ { 2 t } - 2 } { \mathrm { e } ^ { 2 t } + 1 } , \quad y = \mathrm { e } ^ { 3 t } + 1$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the exact gradient of the curve at the point where the curve crosses the \(y\)-axis.
CAIE P2 2005 June Q5
9 marks Moderate -0.3
5
  1. By differentiating \(\frac { 1 } { \cos \theta }\), show that if \(y = \sec \theta\) then \(\frac { \mathrm { d } y } { \mathrm {~d} \theta } = \sec \theta \tan \theta\).
  2. The parametric equations of a curve are $$x = 1 + \tan \theta , \quad y = \sec \theta$$ for \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\). Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sin \theta\).
  3. Find the coordinates of the point on the curve at which the gradient of the curve is \(\frac { 1 } { 2 }\).
CAIE P2 2007 June Q3
7 marks Moderate -0.3
3 The parametric equations of a curve are $$x = 3 t + \ln ( t - 1 ) , \quad y = t ^ { 2 } + 1 , \quad \text { for } t > 1$$
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the coordinates of the only point on the curve at which the gradient of the curve is equal to 1 .
CAIE P2 2011 June Q2
4 marks Moderate -0.5
2 A curve has parametric equations $$x = 3 t + \sin 2 t , \quad y = 4 + 2 \cos 2 t$$ Find the exact gradient of the curve at the point for which \(t = \frac { 1 } { 6 } \pi\).
CAIE P2 2018 June Q5
7 marks Standard +0.3
5 The parametric equations of a curve are $$x = 2 \cos 2 \theta + 3 \sin \theta , \quad y = 3 \cos \theta$$ for \(0 < \theta < \frac { 1 } { 2 } \pi\).
  1. Find the gradient of the curve at the point for which \(\theta = 1\) radian.
  2. Find the value of \(\sin \theta\) at the point on the curve where the tangent is parallel to the \(y\)-axis.
CAIE P3 2014 June Q3
6 marks Standard +0.3
3 The parametric equations of a curve are $$x = \ln ( 2 t + 3 ) , \quad y = \frac { 3 t + 2 } { 2 t + 3 }$$ Find the gradient of the curve at the point where it crosses the \(y\)-axis.
CAIE P3 2017 June Q4
8 marks Standard +0.3
4 The parametric equations of a curve are $$x = \ln \cos \theta , \quad y = 3 \theta - \tan \theta ,$$ where \(0 \leqslant \theta < \frac { 1 } { 2 } \pi\).
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\tan \theta\).
  2. Find the exact \(y\)-coordinate of the point on the curve at which the gradient of the normal is equal to 1 . \includegraphics[max width=\textwidth, alt={}, center]{b00cefad-7c3c-4672-b309-f19aafab8b01-08_378_689_260_726} The diagram shows a semicircle with centre \(O\), radius \(r\) and diameter \(A B\). The point \(P\) on its circumference is such that the area of the minor segment on \(A P\) is equal to half the area of the minor segment on \(B P\). The angle \(A O P\) is \(x\) radians.
CAIE P3 2010 November Q2
5 marks Moderate -0.8
2 The parametric equations of a curve are $$x = \frac { t } { 2 t + 3 } , \quad y = \mathrm { e } ^ { - 2 t }$$ Find the gradient of the curve at the point for which \(t = 0\).
CAIE P3 2012 November Q3
6 marks Standard +0.3
3 The parametric equations of a curve are $$x = \frac { 4 t } { 2 t + 3 } , \quad y = 2 \ln ( 2 t + 3 )$$
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), simplifying your answer.
  2. Find the gradient of the curve at the point for which \(x = 1\).
CAIE P2 2019 November Q7
8 marks Standard +0.3
7 The parametric equations of a curve are $$x = 3 \sin 2 \theta , \quad y = 1 + 2 \tan 2 \theta$$ for \(0 \leqslant \theta < \frac { 1 } { 4 } \pi\).
  1. Find the exact gradient of the curve at the point for which \(\theta = \frac { 1 } { 6 } \pi\).
  2. Find the value of \(\theta\) at the point where the gradient of the curve is 2 , giving the value correct to 3 significant figures.
CAIE P3 2023 November Q2
4 marks Standard +0.3
2 The parametric equations of a curve are $$x = ( \ln t ) ^ { 2 } , \quad y = \mathrm { e } ^ { 2 - t ^ { 2 } }$$ for \(t > 0\).
Find the gradient of the curve at the point where \(t = \mathrm { e }\), simplifying your answer.
Edexcel C4 Specimen Q4
9 marks Moderate -0.3
4. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{0191bf56-a59e-44fe-af8c-bad796156f63-3_458_1552_415_223}
\end{figure} Figure 1 shows part of the curve with parametric equations $$x = \tan t , \quad y = \sin 2 t , \quad - \frac { \pi } { 2 } < t < \frac { \pi } { 2 } .$$
  1. Find the gradient of the curve at the point \(P\) where \(t = \frac { \pi } { 3 }\).
  2. Find an equation of the normal to the curve at \(P\).
  3. Find an equation of the normal to the curve at the point \(Q\) where \(t = \frac { \pi } { 4 }\).
OCR C4 Specimen Q6
9 marks Moderate -0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{798da17d-0af5-4aa6-b731-564642dc28d5-3_766_611_251_703} The diagram shows the curve with parametric equations $$x = a \sin \theta , \quad y = a \theta \cos \theta$$ where \(a\) is a positive constant and \(- \pi \leqslant \theta \leqslant \pi\). The curve meets the positive \(y\)-axis at \(A\) and the positive \(x\)-axis at \(B\).
  1. Write down the value of \(\theta\) corresponding to the origin, and state the coordinates of \(A\) and \(B\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1 - \theta \tan \theta\), and hence find the equation of the tangent to the curve at the origin.
OCR MEI C4 2007 January Q7
20 marks Standard +0.3
7 Fig. 7 shows the curve with parametric equations $$x = \cos \theta , y = \sin \theta - \frac { 1 } { 8 } \sin 2 \theta , 0 \leqslant \theta < 2 \pi$$ The curve crosses the \(x\)-axis at points \(\mathrm { A } ( 1,0 )\) and \(\mathrm { B } ( - 1,0 )\), and the positive \(y\)-axis at C . D is the maximum point of the curve, and E is the minimum point. The solid of revolution formed when this curve is rotated through \(360 ^ { \circ }\) about the \(x\)-axis is used to model the shape of an egg. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5dcd4f44-4c61-4384-be1b-a8d63cb6b5aa-4_744_1207_776_431} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that, at the point \(\mathrm { A } , \theta = 0\). Write down the value of \(\theta\) at the point B , and find the coordinates of C .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Hence show that, at the point D, $$2 \cos ^ { 2 } \theta - 4 \cos \theta - 1 = 0 .$$
  3. Solve this equation, and hence find the \(y\)-coordinate of D , giving your answer correct to 2 decimal places. The cartesian equation of the curve (for \(0 \leqslant \theta \leqslant \pi\) ) is $$y = \frac { 1 } { 4 } ( 4 - x ) \sqrt { 1 - x ^ { 2 } } .$$
  4. Show that the volume of the solid of revolution of this curve about the \(x\)-axis is given by $$\frac { 1 } { 16 } \pi \int _ { - 1 } ^ { 1 } \left( 16 - 8 x - 15 x ^ { 2 } + 8 x ^ { 3 } - x ^ { 4 } \right) \mathrm { d } x .$$ Evaluate this integral.
OCR MEI C4 Q3
7 marks Moderate -0.3
3 A curve has parametric equations $$x = 2 \sin \theta , \quad y = \cos 2 \theta$$
  1. Find the exact coordinates and the gradient of the curve at the point with parameter \(\theta = \frac { 1 } { 3 } \pi\).
  2. Find \(y\) in terms of \(x\).
OCR MEI C4 Q6
7 marks Standard +0.3
6 A curve has parametric equations $$x = a t ^ { 3 } , \quad y = \frac { a } { 1 + t ^ { 2 } }$$ where \(a\) is a constant.
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { - 2 } { 3 t \left( 1 + t ^ { 2 } \right) ^ { 2 } }\).
Hence find the gradient of the curve at the point \(\left( a , \frac { 1 } { 2 } a \right)\).
OCR MEI C4 Q7
5 marks Moderate -0.8
7 A curve has parametric equations \(x = 1 + u ^ { 2 } , y = 2 u ^ { 3 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\).
  2. Hence find the gradient of the curve at the point with coordinates \(( 5,16 )\).
OCR MEI C4 Q4
7 marks Moderate -0.3
4 The parametric equations of a curve are $$x = \sin \theta , \quad y = \sin 2 \theta , \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi$$
  1. Find the exact value of the gradient of the curve at the point where \(\theta = \frac { 1 } { 6 } \pi\).
  2. Show that the cartesian equation of the curve is \(y ^ { 2 } = 4 x ^ { 2 } - 4 x ^ { 4 }\).
OCR MEI C4 Q3
5 marks Moderate -0.8
3 A curve is defined parametrically by the equations $$x = t - \ln t , \quad y = t + \ln t \quad ( t > 0 )$$ Find the gradient of the curve at the point where \(t = 2\).
OCR MEI C4 2009 June Q5
7 marks Moderate -0.3
5 A curve has parametric equations $$x = a t ^ { 3 } , \quad y = \frac { a } { 1 + t ^ { 2 } }$$ where \(a\) is a constant.
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { - 2 } { 3 t \left( 1 + t ^ { 2 } \right) ^ { 2 } }\).
Hence find the gradient of the curve at the point \(\left( a , \frac { 1 } { 2 } a \right)\).
OCR MEI C4 2011 June Q4
7 marks Moderate -0.3
4 A curve has parametric equations $$x = 2 \sin \theta , \quad y = \cos 2 \theta$$
  1. Find the exact coordinates and the gradient of the curve at the point with parameter \(\theta = \frac { 1 } { 3 } \pi\).
  2. Find \(y\) in terms of \(x\).
Edexcel Paper 2 2021 October Q13
6 marks Standard +0.3
  1. The curve \(C\) has parametric equations
$$x = \sin 2 \theta \quad y = \operatorname { cosec } ^ { 3 } \theta \quad 0 < \theta < \frac { \pi } { 2 }$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\)
  2. Hence find the exact value of the gradient of the tangent to \(C\) at the point where \(y = 8\)