CAIE P3 2017 June — Question 4

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2017
SessionJune
TopicParametric equations

4 The parametric equations of a curve are $$x = \ln \cos \theta , \quad y = 3 \theta - \tan \theta ,$$ where \(0 \leqslant \theta < \frac { 1 } { 2 } \pi\).
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\tan \theta\).
  2. Find the exact \(y\)-coordinate of the point on the curve at which the gradient of the normal is equal to 1 .
    \includegraphics[max width=\textwidth, alt={}, center]{b00cefad-7c3c-4672-b309-f19aafab8b01-08_378_689_260_726} The diagram shows a semicircle with centre \(O\), radius \(r\) and diameter \(A B\). The point \(P\) on its circumference is such that the area of the minor segment on \(A P\) is equal to half the area of the minor segment on \(B P\). The angle \(A O P\) is \(x\) radians.