Edexcel P3 2021 January — Question 2

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2021
SessionJanuary
TopicCurve Sketching
TypeFind constants from sketch features

2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{624e9e2f-b6b8-47ce-accc-31dcd5f0554e-04_903_1148_123_399} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where \(x \in \mathbb { R }\) and \(\mathrm { f } ( x )\) is a polynomial. The curve passes through the origin and touches the \(x\)-axis at the point \(( 3,0 )\) There is a maximum turning point at \(( 1,2 )\) and a minimum turning point at \(( 3,0 )\) On separate diagrams, sketch the curve with equation
  1. \(y = 3 f ( 2 x )\)
  2. \(y = \mathrm { f } ( - x ) - 1\) On each sketch, show clearly the coordinates of
    • the point where the curve crosses the \(y\)-axis
    • any maximum or minimum turning points