Find threshold for given probability

A question is this type if and only if it asks to find a value of n, t, or d such that a probability condition is satisfied.

4 questions

CAIE FP2 2014 June Q7
7 The random variable \(T\) is the lifetime, in hours, of a randomly chosen decorative light bulb of a particular type. It is given that \(T\) has a negative exponential distribution with mean 1000 hours.
  1. Write down the probability density function of \(T\).
  2. Find the probability that a randomly chosen bulb of this type has a lifetime of more than 2000 hours. A display uses 10 randomly chosen bulbs of this type, and they are all switched on simultaneously. Find the greatest value of \(t\) such that the probability that they are all alight at time \(t\) hours is at least 0.9 .
CAIE FP2 2016 November Q5
5 The distance, \(X \mathrm {~km}\), completed by a new car before any mechanical fault occurs has distribution function F given by $$\mathrm { F } ( x ) = \begin{cases} 1 - \mathrm { e } ^ { - a x } & x \geqslant 0
0 & \text { otherwise } \end{cases}$$ where \(a\) is a positive constant. The mean value of \(X\) is 10000 . Find
  1. the value of \(a\),
  2. the probability that a new car completes less than 15000 km before any mechanical fault occurs. The probability that a new car completes at least \(d \mathrm {~km}\) before any mechanical fault occurs is 0.75 .
  3. Find the value of \(d\).
AQA Further Paper 3 Statistics 2020 June Q6
2 marks
6 The distance, \(X\) metres, between successive breaks in a water pipe is modelled by an exponential distribution. The mean of \(X\) is 25 The distance between two successive breaks is measured. A water pipe is given a 'Red' rating if the distance is less than \(d\) metres. The government has introduced a new law changing \(d\) to 2
Before the government introduced the new law, the probability that a water pipe is given a 'Red' rating was 0.05 6
  1. Explain whether or not the probability that a water pipe is given a 'Red' rating has increased as a result of the new law.
    6
  2. Find the probability density function of the random variable \(X\). 6
  3. After investigation, the distances between successive breaks in water pipes are found to have a standard deviation of 5 metres. Explain whether or not the use of an exponential model in parts (a) and (b) is appropriate.
    [0pt] [2 marks]
SPS SPS FM 2021 February Q5
2 marks
5. The distance, \(X\) metres, between successive breaks in a water pipe is modelled by an exponential distribution. The mean of \(X\) is 25 The distance between two successive breaks is measured. A water pipe is given a 'Red' rating if the distance is less than \(d\) metres. The govemment has introduced a new law changing \(d\) to 2
Before the govermment introduced the new law, the probability that a water pipe is given a 'Red' rating was 0.05
  1. Explain whether or not the probability that a water pipe is given a 'Red' rating has increased as a result of the new law.
  2. Find the probability density function of the random variable \(X\).
  3. After investigation, the distances between successive breaks in water pipes are found to have a standard deviation of 5 metres. Explain whether or not the use of an exponential model in parts (a) and (b) is appropriate.
    [0pt] [2 marks]