AQA Further Paper 3 Statistics 2020 June — Question 6 2 marks

Exam BoardAQA
ModuleFurther Paper 3 Statistics (Further Paper 3 Statistics)
Year2020
SessionJune
Marks2
TopicExponential Distribution
TypeFind threshold for given probability

6 The distance, \(X\) metres, between successive breaks in a water pipe is modelled by an exponential distribution. The mean of \(X\) is 25 The distance between two successive breaks is measured. A water pipe is given a 'Red' rating if the distance is less than \(d\) metres. The government has introduced a new law changing \(d\) to 2
Before the government introduced the new law, the probability that a water pipe is given a 'Red' rating was 0.05 6
  1. Explain whether or not the probability that a water pipe is given a 'Red' rating has increased as a result of the new law.
    6
  2. Find the probability density function of the random variable \(X\). 6
  3. After investigation, the distances between successive breaks in water pipes are found to have a standard deviation of 5 metres. Explain whether or not the use of an exponential model in parts (a) and (b) is appropriate.
    [0pt] [2 marks]