4 The continuous random variable \(X\) has cumulative distribution function given by
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c }
0 & x \leqslant 0
k \left( x ^ { 3 } - \frac { 3 } { 8 } x ^ { 4 } \right) & 0 < x \leqslant 2
1 & x > 2
\end{array} \right.$$
where \(k\) is a constant.
- Show that \(k = \frac { 1 } { 2 }\)
- Showing your working clearly, use calculus to find
- \(\mathrm { E } ( X )\)
- the mode of \(X\)
- Describe, giving a reason, the skewness of the distribution of \(X\)