Edexcel P4 2024 January — Question 9

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2024
SessionJanuary
TopicParametric equations

9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6f577461-24b7-4615-b58b-e67597fd9675-28_597_1020_251_525} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\) with parametric equations $$x = \sec t \quad y = \sqrt { 3 } \tan \left( t + \frac { \pi } { 3 } \right) \quad \frac { \pi } { 6 } < t < \frac { \pi } { 2 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\)
  2. Find an equation for the tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\) Give your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
  3. Show that all points on \(C\) satisfy the equation $$y = \frac { A x ^ { 2 } + B \sqrt { 3 x ^ { 2 } - 3 } } { 4 - 3 x ^ { 2 } }$$ where \(A\) and \(B\) are constants to be found.