Edexcel P4 (Pure Mathematics 4) 2024 January

Question 1
View details
  1. Find, in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), the binomial expansion of
$$( 1 - 4 x ) ^ { - 3 } \quad | x | < \frac { 1 } { 4 }$$ fully simplifying each term.
Question 2
View details
  1. Given that
$$\frac { 3 x + 4 } { ( x - 2 ) ( 2 x + 1 ) ^ { 2 } } \equiv \frac { A } { x - 2 } + \frac { B } { 2 x + 1 } + \frac { C } { ( 2 x + 1 ) ^ { 2 } }$$
  1. find the values of the constants \(A , B\) and \(C\).
  2. Hence find the exact value of $$\int _ { 7 } ^ { 12 } \frac { 3 x + 4 } { ( x - 2 ) ( 2 x + 1 ) ^ { 2 } } \mathrm {~d} x$$ giving your answer in the form \(p \ln q + r\) where \(p\), \(q\) and \(r\) are rational numbers.
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6f577461-24b7-4615-b58b-e67597fd9675-08_815_849_248_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\), shown in Figure 1, has equation $$y ^ { 2 } x + 3 y = 4 x ^ { 2 } + k \quad y > 0$$ where \(k\) is a constant.
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\) The point \(P ( p , 2 )\), where \(p\) is a constant, lies on \(C\).
    Given that \(P\) is the minimum turning point on \(C\),
  2. find
    1. the value of \(p\)
    2. the value of \(k\)
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6f577461-24b7-4615-b58b-e67597fd9675-12_595_588_248_740} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A cone, shown in Figure 2, has
  • fixed height 5 cm
  • base radius \(r \mathrm {~cm}\)
  • slant height \(l \mathrm {~cm}\)
    1. Find an expression for \(l\) in terms of \(r\)
Given that the base radius is increasing at a constant rate of 3 cm per minute,
  • find the rate at which the total surface area of the cone is changing when the radius of the cone is 1.5 cm . Give your answer in \(\mathrm { cm } ^ { 2 }\) per minute to one decimal place.
    [0pt] [The total surface area, \(S\), of a cone is given by the formula \(S = \pi r ^ { 2 } + \pi r l\) ]
  • Question 5
    View details
    1. (a) Find \(\int x ^ { 2 } \cos 2 x d x\)
      (b) Hence solve the differential equation
    $$\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( \frac { t \cos t } { y } \right) ^ { 2 }$$ giving your answer in the form \(y ^ { n } = \mathrm { f } ( t )\) where \(n\) is an integer.
    Question 6
    View details
    1. Relative to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
    $$\begin{aligned} & l _ { 1 } : \mathbf { r } = ( 3 \mathbf { i } + p \mathbf { j } + 7 \mathbf { k } ) + \lambda ( 2 \mathbf { i } - 5 \mathbf { j } + 4 \mathbf { k } )
    & l _ { 2 } : \mathbf { r } = ( 8 \mathbf { i } - 2 \mathbf { j } + 5 \mathbf { k } ) + \mu ( 4 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } ) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters and \(p\) is a constant.
    Given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect,
    1. find the value of \(p\),
    2. find the position vector of the point of intersection.
    3. Find the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\) Give your answer in degrees to one decimal place. The point \(A\) lies on \(l _ { 1 }\) with parameter \(\lambda = 2\)
      The point \(B\) lies on \(l _ { 2 }\) with \(\overrightarrow { A B }\) perpendicular to \(l _ { 2 }\)
    4. Find the coordinates of \(B\)
    Question 7
    View details
    1. (a) Using the substitution \(u = 4 x + 2 \sin 2 x\), or otherwise, show that
    $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { 4 x + 2 \sin 2 x } \cos ^ { 2 } x \mathrm {~d} x = \frac { 1 } { 8 } \left( \mathrm { e } ^ { 2 \pi } - 1 \right)$$ Figure 3 The curve shown in Figure 3, has equation $$y = 6 \mathrm { e } ^ { 2 x + \sin 2 x } \cos x$$ The region \(R\), shown shaded in Figure 3, is bounded by the positive \(x\)-axis, the positive \(y\)-axis and the curve. The region \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid.
    (b) Use the answer to part (a) to find the volume of the solid formed, giving the answer in simplest form.
    Question 8
    View details
    1. Use proof by contradiction to prove that the curve with equation
    $$y = 2 x + x ^ { 3 } + \cos x$$ has no stationary points.
    Question 9
    View details
    9. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6f577461-24b7-4615-b58b-e67597fd9675-28_597_1020_251_525} \captionsetup{labelformat=empty} \caption{Figure 4}
    \end{figure} Figure 4 shows a sketch of the curve \(C\) with parametric equations $$x = \sec t \quad y = \sqrt { 3 } \tan \left( t + \frac { \pi } { 3 } \right) \quad \frac { \pi } { 6 } < t < \frac { \pi } { 2 }$$
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\)
    2. Find an equation for the tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\) Give your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
    3. Show that all points on \(C\) satisfy the equation $$y = \frac { A x ^ { 2 } + B \sqrt { 3 x ^ { 2 } - 3 } } { 4 - 3 x ^ { 2 } }$$ where \(A\) and \(B\) are constants to be found.