2. The curve \(C\) has parametric equations
$$x = \frac { t ^ { 4 } } { 2 t + 1 } \quad y = \frac { t ^ { 3 } } { 2 t + 1 } \quad t > 0$$
- Write down \(\frac { x } { y }\) in terms of \(t\), giving your answer in simplest form.
- Hence show that all points on \(C\) satisfy the equation
$$x ^ { 3 } - 2 x y ^ { 3 } - y ^ { 4 } = 0$$