Edexcel C3 2016 June — Question 9

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2016
SessionJune
TopicExponential Functions

9. The amount of an antibiotic in the bloodstream, from a given dose, is modelled by the formula $$x = D \mathrm { e } ^ { - 0.2 t }$$ where \(x\) is the amount of the antibiotic in the bloodstream in milligrams, \(D\) is the dose given in milligrams and \(t\) is the time in hours after the antibiotic has been given. A first dose of 15 mg of the antibiotic is given.
  1. Use the model to find the amount of the antibiotic in the bloodstream 4 hours after the dose is given. Give your answer in mg to 3 decimal places. A second dose of 15 mg is given 5 hours after the first dose has been given. Using the same model for the second dose,
  2. show that the total amount of the antibiotic in the bloodstream 2 hours after the second dose is given is 13.754 mg to 3 decimal places. No more doses of the antibiotic are given. At time \(T\) hours after the second dose is given, the total amount of the antibiotic in the bloodstream is 7.5 mg .
  3. Show that \(T = a \ln \left( b + \frac { b } { \mathrm { e } } \right)\), where \(a\) and \(b\) are integers to be determined.
    VIIIV SIHI NITIIIM I I N O CVI4V SIHI NI IHIHM ION OCVI4V SIHI NI JIIIM ION OO
    \includegraphics[max width=\textwidth, alt={}, center]{d3ba2776-eedb-48f0-834f-41aa454afba3-16_2258_47_315_37}