- (a) By writing \(\operatorname { cosec } x\) as \(\frac { 1 } { \sin x }\), show that
$$\frac { \mathrm { d } ( \operatorname { cosec } x ) } { \mathrm { d } x } = - \operatorname { cosec } x \cot x$$
Given that \(y = \mathrm { e } ^ { 3 x } \operatorname { cosec } 2 x , 0 < x < \frac { \pi } { 2 }\),
(b) find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
The curve with equation \(y = \mathrm { e } ^ { 3 x } \operatorname { cosec } 2 x , 0 < x < \frac { \pi } { 2 }\), has a single turning point.
(c) Show that the \(x\)-coordinate of this turning point is at \(x = \frac { 1 } { 2 } \arctan k\) where the value
of the constant \(k\) should be found. of the constant \(k\) should be found.