Edexcel C3 2008 January — Question 6

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2008
SessionJanuary
TopicReciprocal Trig & Identities

6. (a) Use the double angle formulae and the identity $$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B$$ to obtain an expression for \(\cos 3 x\) in terms of powers of \(\cos x\) only.
(b) (i) Prove that $$\frac { \cos x } { 1 + \sin x } + \frac { 1 + \sin x } { \cos x } \equiv 2 \sec x , \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 }$$ (ii) Hence find, for \(0 < x < 2 \pi\), all the solutions of $$\frac { \cos x } { 1 + \sin x } + \frac { 1 + \sin x } { \cos x } = 4$$