| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2008 |
| Session | January |
| Topic | Reciprocal Trig & Identities |
6. (a) Use the double angle formulae and the identity
$$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B$$
to obtain an expression for \(\cos 3 x\) in terms of powers of \(\cos x\) only.
(b) (i) Prove that
$$\frac { \cos x } { 1 + \sin x } + \frac { 1 + \sin x } { \cos x } \equiv 2 \sec x , \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 }$$
(ii) Hence find, for \(0 < x < 2 \pi\), all the solutions of
$$\frac { \cos x } { 1 + \sin x } + \frac { 1 + \sin x } { \cos x } = 4$$