| Exam Board | Edexcel |
| Module | C34 (Core Mathematics 3 & 4) |
| Year | 2015 |
| Session | June |
| Topic | Harmonic Form |
11. (a) Express \(1.5 \sin \theta - 1.2 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\) Give the value of \(R\) and the value of \(\alpha\) to 3 decimal places.
The height, \(H\) metres, of sea water at the entrance to a harbour on a particular day, is modelled by the equation
$$H = 3 + 1.5 \sin \left( \frac { \pi t } { 6 } \right) - 1.2 \cos \left( \frac { \pi t } { 6 } \right) , \quad 0 \leqslant t < 12$$
where \(t\) is the number of hours after midday.
(b) Using your answer to part (a), calculate the minimum value of \(H\) predicted by this model and the value of \(t\), to 2 decimal places, when this minimum occurs.
(c) Find, to the nearest minute, the times when the height of sea water at the entrance to the harbour is predicted by this model to be 4 metres.