Edexcel C34 2015 June — Question 11

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2015
SessionJune
TopicHarmonic Form

11. (a) Express \(1.5 \sin \theta - 1.2 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\) Give the value of \(R\) and the value of \(\alpha\) to 3 decimal places. The height, \(H\) metres, of sea water at the entrance to a harbour on a particular day, is modelled by the equation $$H = 3 + 1.5 \sin \left( \frac { \pi t } { 6 } \right) - 1.2 \cos \left( \frac { \pi t } { 6 } \right) , \quad 0 \leqslant t < 12$$ where \(t\) is the number of hours after midday.
(b) Using your answer to part (a), calculate the minimum value of \(H\) predicted by this model and the value of \(t\), to 2 decimal places, when this minimum occurs.
(c) Find, to the nearest minute, the times when the height of sea water at the entrance to the harbour is predicted by this model to be 4 metres.