Edexcel C34 2015 June — Question 8

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2015
SessionJune
TopicDifferential equations

  1. (a) Prove by differentiation that
$$\frac { \mathrm { d } } { \mathrm {~d} y } ( \ln \tan 2 y ) = \frac { 4 } { \sin 4 y } , \quad 0 < y < \frac { \pi } { 4 }$$ (b) Given that \(y = \frac { \pi } { 6 }\) when \(x = 0\), solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \cos x \sin 4 y , \quad 0 < y < \frac { \pi } { 4 }$$ Give your answer in the form \(\tan 2 y = A \mathrm { e } ^ { B \sin x }\), where \(A\) and \(B\) are constants to be determined.