Edexcel C34 2016 January — Question 12

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2016
SessionJanuary
TopicVectors: Lines & Planes

  1. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
$$l _ { 1 } : \mathbf { r } = \left( \begin{array} { r } 12
- 4
5 \end{array} \right) + \lambda \left( \begin{array} { r } 5
- 4
2 \end{array} \right) , \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 2
2
0 \end{array} \right) + \mu \left( \begin{array} { l } 0
6
3 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet, and find the position vector of their point of intersection \(A\).
  2. Find, to the nearest \(0.1 ^ { \circ }\), the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\) The point \(B\) has position vector \(\left( \begin{array} { l } 7
    0
    3 \end{array} \right)\).
  3. Show that \(B\) lies on \(l _ { 1 }\)
  4. Find the shortest distance from \(B\) to the line \(l _ { 2 }\), giving your answer to 3 significant figures.