- (a) Express \(\frac { 3 x ^ { 2 } - 4 } { x ^ { 2 } ( 3 x - 2 ) }\) in partial fractions.
(b) Given that \(x > \frac { 2 } { 3 }\), find the general solution of the differential equation
$$x ^ { 2 } ( 3 x - 2 ) \frac { \mathrm { d } y } { \mathrm {~d} x } = y \left( 3 x ^ { 2 } - 4 \right)$$
Give your answer in the form \(y = \mathrm { f } ( x )\).