Edexcel P3 2024 January — Question 2

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2024
SessionJanuary
TopicFixed Point Iteration

  1. A curve has equation \(y = \mathrm { f } ( x )\) where
$$\mathrm { f } ( x ) = x ^ { 4 } - 5 x ^ { 2 } + 4 x - 7 \quad x \in \mathbb { R }$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) has a root, \(\alpha\), in the interval [2,3]
  2. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as $$x = \sqrt [ 3 ] { \frac { 5 x ^ { 2 } - 4 x + 7 } { x } }$$ The iterative formula $$x _ { n + 1 } = \sqrt [ 3 ] { \frac { 5 x _ { n } ^ { 2 } - 4 x _ { n } + 7 } { x _ { n } } }$$ is used to find \(\alpha\)
  3. Starting with \(x _ { 1 } = 2\) and using the iterative formula,
    1. find, to 4 decimal places, the value of \(x _ { 2 }\)
    2. find, to 4 decimal places, the value of \(\alpha\)