Edexcel P3 2021 January — Question 7

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2021
SessionJanuary
TopicReciprocal Trig & Identities

7. (a) Prove that $$\frac { \sin 2 x } { \cos x } + \frac { \cos 2 x } { \sin x } \equiv \operatorname { cosec } x \quad x \neq \frac { n \pi } { 2 } n \in \mathbb { Z }$$ (b) Hence solve, for \(- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }\) $$7 + \frac { \sin 4 \theta } { \cos 2 \theta } + \frac { \cos 4 \theta } { \sin 2 \theta } = 3 \cot ^ { 2 } 2 \theta$$ giving your answers in radians to 3 significant figures where appropriate.