7. (a) Prove that
$$\frac { \sin 2 x } { \cos x } + \frac { \cos 2 x } { \sin x } \equiv \operatorname { cosec } x \quad x \neq \frac { n \pi } { 2 } n \in \mathbb { Z }$$
(b) Hence solve, for \(- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }\)
$$7 + \frac { \sin 4 \theta } { \cos 2 \theta } + \frac { \cos 4 \theta } { \sin 2 \theta } = 3 \cot ^ { 2 } 2 \theta$$
giving your answers in radians to 3 significant figures where appropriate.