Edexcel P3 2020 January — Question 9

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2020
SessionJanuary
TopicHarmonic Form

9. $$\mathrm { f } ( \theta ) = 5 \cos \theta - 4 \sin \theta \quad \theta \in \mathbb { R }$$
  1. Express \(\mathrm { f } ( \theta )\) in the form \(R \cos ( \theta + \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\), in radians, to 3 decimal places. The curve with equation \(y = \cos \theta\) is transformed onto the curve with equation \(y = \mathrm { f } ( \theta )\) by a sequence of two transformations. Given that the first transformation is a stretch and the second a translation,
    1. describe fully the transformation that is a stretch,
    2. describe fully the transformation that is a translation. Given $$g ( \theta ) = \frac { 90 } { 4 + ( f ( \theta ) ) ^ { 2 } } \quad \theta \in \mathbb { R }$$
  2. find the range of g.
    Leave blank
    Q9

    \hline END &
    \hline \end{tabular}