Edexcel P3 (Pure Mathematics 3) 2020 January

Question 1
View details
  1. A population of a rare species of toad is being studied.
The number of toads, \(N\), in the population, \(t\) years after the start of the study, is modelled by the equation $$N = \frac { 900 \mathrm { e } ^ { 0.12 t } } { 2 \mathrm { e } ^ { 0.12 t } + 1 } \quad t \geqslant 0 , t \in \mathbb { R }$$ According to this model,
  1. calculate the number of toads in the population at the start of the study,
  2. find the value of \(t\) when there are 420 toads in the population, giving your answer to 2 decimal places.
  3. Explain why, according to this model, the number of toads in the population can never reach 500
Question 2
View details
2. The function \(f\) and the function \(g\) are defined by $$\begin{array} { l l } \mathrm { f } ( x ) = \frac { 12 } { x + 1 } & x > 0 , x \in \mathbb { R }
\mathrm {~g} ( x ) = \frac { 5 } { 2 } \ln x & x > 0 , x \in \mathbb { R } \end{array}$$
  1. Find, in simplest form, the value of \(\mathrm { fg } \left( \mathrm { e } ^ { 2 } \right)\)
  2. Find f-1
  3. Hence, or otherwise, find all real solutions of the equation $$\mathrm { f } ^ { - 1 } ( x ) = \mathrm { f } ( x )$$
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1c700103-ecab-4a08-b411-3f445ed88885-08_599_883_299_536} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a linear relationship between \(\log _ { 10 } y\) and \(\log _ { 10 } x\)
The line passes through the points \(( 0,4 )\) and \(( 6,0 )\) as shown.
  1. Find an equation linking \(\log _ { 10 } y\) with \(\log _ { 10 } x\)
  2. Hence, or otherwise, express \(y\) in the form \(p x ^ { q }\), where \(p\) and \(q\) are constants to be found.
Question 4
View details
4. (i) $$f ( x ) = \frac { ( 2 x + 5 ) ^ { 2 } } { x - 3 } \quad x \neq 3$$
  1. Find \(\mathrm { f } ^ { \prime } ( x )\) in the form \(\frac { P ( x ) } { Q ( x ) }\) where \(P ( x )\) and \(Q ( x )\) are fully factorised quadratic expressions.
  2. Hence find the range of values of \(x\) for which \(\mathrm { f } ( x )\) is increasing.
    (ii) $$g ( x ) = x \sqrt { \sin 4 x } \quad 0 \leqslant x < \frac { \pi } { 4 }$$ The curve with equation \(y = g ( x )\) has a maximum at the point \(M\). Show that the \(x\) coordinate of \(M\) satisfies the equation $$\tan 4 x + k x = 0$$ where \(k\) is a constant to be found.
Question 5
View details
5. (a) Use the substitution \(t = \tan x\) to show that the equation $$12 \tan 2 x + 5 \cot x \sec ^ { 2 } x = 0$$ can be written in the form $$5 t ^ { 4 } - 24 t ^ { 2 } - 5 = 0$$ (b) Hence solve, for \(0 \leqslant x < 360 ^ { \circ }\), the equation $$12 \tan 2 x + 5 \cot x \sec ^ { 2 } x = 0$$ Show each stage of your working and give your answers to one decimal place.
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1c700103-ecab-4a08-b411-3f445ed88885-18_736_1102_258_427} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows part of the graph with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = 2 | 2 x - 5 | + 3 \quad x \geqslant 0$$ The vertex of the graph is at point \(P\) as shown.
  1. State the coordinates of \(P\).
  2. Solve the equation \(\mathrm { f } ( x ) = 3 x - 2\) Given that the equation $$f ( x ) = k x + 2$$ where \(k\) is a constant, has exactly two roots,
  3. find the range of values of \(k\).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1c700103-ecab-4a08-b411-3f445ed88885-22_707_1047_264_463} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve with equation $$y = 2 \cos 3 x - 3 x + 4 \quad x > 0$$ where \(x\) is measured in radians. The curve crosses the \(x\)-axis at the point \(P\), as shown in Figure 3.
Given that the \(x\) coordinate of \(P\) is \(\alpha\),
  1. show that \(\alpha\) lies between 0.8 and 0.9 The iteration formula $$x _ { n + 1 } = \frac { 1 } { 3 } \arccos \left( 1.5 x _ { n } - 2 \right)$$ can be used to find an approximate value for \(\alpha\).
  2. Using this iteration formula with \(x _ { 1 } = 0.8\) find, to 4 decimal places, the value of
    1. \(X _ { 2 }\)
    2. \(X _ { 5 }\) The point \(Q\) and the point \(R\) are local minimum points on the curve, as shown in Figure 3.
      Given that the \(x\) coordinates of \(Q\) and \(R\) are \(\beta\) and \(\lambda\) respectively, and that they are the two smallest values of \(x\) at which local minima occur,
  3. find, using calculus, the exact value of \(\beta\) and the exact value of \(\lambda\).
Question 8
View details
8. (i) Find, using algebraic integration, the exact value of $$\int _ { 3 } ^ { 42 } \frac { 2 } { 3 x - 1 } \mathrm {~d} x$$ giving your answer in simplest form.
(ii) $$\mathrm { h } ( x ) = \frac { 2 x ^ { 3 } - 7 x ^ { 2 } + 8 x + 1 } { ( x - 1 ) ^ { 2 } } \quad x > 1$$ Given \(\mathrm { h } ( x ) = A x + B + \frac { C } { ( x - 1 ) ^ { 2 } }\) where \(A , B\) and \(C\) are constants to be found, find $$\int \mathrm { h } ( x ) \mathrm { d } x$$ \includegraphics[max width=\textwidth, alt={}, center]{1c700103-ecab-4a08-b411-3f445ed88885-26_2258_47_312_1985}
Question 9
View details
9. $$\mathrm { f } ( \theta ) = 5 \cos \theta - 4 \sin \theta \quad \theta \in \mathbb { R }$$
  1. Express \(\mathrm { f } ( \theta )\) in the form \(R \cos ( \theta + \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\), in radians, to 3 decimal places. The curve with equation \(y = \cos \theta\) is transformed onto the curve with equation \(y = \mathrm { f } ( \theta )\) by a sequence of two transformations. Given that the first transformation is a stretch and the second a translation,
    1. describe fully the transformation that is a stretch,
    2. describe fully the transformation that is a translation. Given $$g ( \theta ) = \frac { 90 } { 4 + ( f ( \theta ) ) ^ { 2 } } \quad \theta \in \mathbb { R }$$
  2. find the range of g.
    Leave blank
    Q9

    \hline END &
    \hline \end{tabular}