6
\includegraphics[max width=\textwidth, alt={}, center]{3fd0b68f-41b1-4eee-8018-bcaf3cf22950-3_801_1273_255_434}
The diagram shows a circle \(C _ { 1 }\) touching a circle \(C _ { 2 }\) at a point \(X\). Circle \(C _ { 1 }\) has centre \(A\) and radius 6 cm , and circle \(C _ { 2 }\) has centre \(B\) and radius 10 cm . Points \(D\) and \(E\) lie on \(C _ { 1 }\) and \(C _ { 2 }\) respectively and \(D E\) is parallel to \(A B\). Angle \(D A X = \frac { 1 } { 3 } \pi\) radians and angle \(E B X = \theta\) radians.
- By considering the perpendicular distances of \(D\) and \(E\) from \(A B\), show that the exact value of \(\theta\) is \(\sin ^ { - 1 } \left( \frac { 3 \sqrt { } 3 } { 10 } \right)\).
- Find the perimeter of the shaded region, correct to 4 significant figures.