Edexcel C2 2007 June — Question 10

Exam BoardEdexcel
ModuleC2 (Core Mathematics 2)
Year2007
SessionJune
TopicDifferentiation Applications
TypeOptimization with constraints

10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{22ebc302-765c-4734-b312-b286ccb20be9-15_538_529_205_744} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a solid brick in the shape of a cuboid measuring \(2 x \mathrm {~cm}\) by \(x \mathrm {~cm}\) by \(y \mathrm {~cm}\). The total surface area of the brick is \(600 \mathrm {~cm} ^ { 2 }\).
  1. Show that the volume, \(V \mathrm {~cm} ^ { 3 }\), of the brick is given by $$V = 200 x - \frac { 4 x ^ { 3 } } { 3 }$$ Given that \(x\) can vary,
  2. use calculus to find the maximum value of \(V\), giving your answer to the nearest \(\mathrm { cm } ^ { 3 }\).
  3. Justify that the value of \(V\) you have found is a maximum.