10
\includegraphics[max width=\textwidth, alt={}, center]{ae57d8f1-5a0d-426c-952d-e8b99c6aeaba-4_433_969_1475_587}
The diagram shows an open rectangular tank of height \(h\) metres covered with a lid. The base of the tank has sides of length \(x\) metres and \(\frac { 1 } { 2 } x\) metres and the lid is a rectangle with sides of length \(\frac { 5 } { 4 } x\) metres and \(\frac { 4 } { 5 } x\) metres. When full the tank holds \(4 \mathrm {~m} ^ { 3 }\) of water. The material from which the tank is made is of negligible thickness. The external surface area of the tank together with the area of the top of the lid is \(A \mathrm {~m} ^ { 2 }\).
- Express \(h\) in terms of \(x\) and hence show that \(A = \frac { 3 } { 2 } x ^ { 2 } + \frac { 24 } { x }\).
- Given that \(x\) can vary, find the value of \(x\) for which \(A\) is a minimum, showing clearly that \(A\) is a minimum and not a maximum.
[0pt]
[5]