Edexcel P2 2020 January — Question 10

Exam BoardEdexcel
ModuleP2 (Pure Mathematics 2)
Year2020
SessionJanuary
TopicDifferentiation Applications
TypeDetermine nature of stationary points

10. A curve \(C\) has equation $$y = 4 x ^ { 3 } - 9 x + \frac { k } { x } \quad x > 0$$ where \(k\) is a constant.
The point \(P\) with \(x\) coordinate \(\frac { 1 } { 2 }\) lies on \(C\).
Given that \(P\) is a stationary point of \(C\),
  1. show that \(k = - \frac { 3 } { 2 }\)
  2. Determine the nature of the stationary point at \(P\), justifying your answer. The curve \(C\) has a second stationary point.
  3. Using algebra, find the \(x\) coordinate of this second stationary point.
    \includegraphics[max width=\textwidth, alt={}, center]{08aac50c-7317-4510-927a-7f5f2e00f485-26_2255_50_312_1980}