Edexcel C1 2018 June — Question 6

Exam BoardEdexcel
ModuleC1 (Core Mathematics 1)
Year2018
SessionJune
TopicArithmetic Sequences and Series

  1. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by
$$\begin{aligned} a _ { 1 } & = 4
a _ { n + 1 } & = \frac { a _ { n } } { a _ { n } + 1 } , \quad n \geqslant 1 , n \in \mathbb { N } \end{aligned}$$
  1. Find the values of \(a _ { 2 } , a _ { 3 }\) and \(a _ { 4 }\) Write your answers as simplified fractions. Given that $$a _ { n } = \frac { 4 } { p n + q } , \text { where } p \text { and } q \text { are constants }$$
  2. state the value of \(p\) and the value of \(q\).
  3. Hence calculate the value of \(N\) such that \(a _ { N } = \frac { 4 } { 321 }\)