Edexcel C1 (Core Mathematics 1) 2018 June

Question 1
View details
  1. (i) Simplify
$$\sqrt { 48 } - \frac { 6 } { \sqrt { 3 } }$$ Write your answer in the form \(a \sqrt { 3 }\), where \(a\) is an integer to be found.
(ii) Solve the equation $$3 ^ { 6 x - 3 } = 81$$ Write your answer as a rational number.
Question 2
View details
  1. Given
$$y = 3 \sqrt { x } - 6 x + 4 , \quad x > 0$$
  1. find \(\int y \mathrm {~d} x\), simplifying each term.
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. Hence find the value of \(x\) such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Question 3
View details
3. $$f ( x ) = x ^ { 2 } - 10 x + 23$$
  1. Express \(\mathrm { f } ( x )\) in the form \(( x + a ) ^ { 2 } + b\), where \(a\) and \(b\) are constants to be found.
  2. Hence, or otherwise, find the exact solutions to the equation $$x ^ { 2 } - 10 x + 23 = 0$$
  3. Use your answer to part (b) to find the larger solution to the equation $$y - 10 y ^ { 0.5 } + 23 = 0$$ Write your solution in the form \(p + q \sqrt { r }\), where \(p , q\) and \(r\) are integers.
Question 4
View details
  1. Each year, Andy pays into a savings scheme. In year one he pays in \(\pounds 600\). His payments increase by \(\pounds 120\) each year so that he pays \(\pounds 720\) in year two, \(\pounds 840\) in year three and so on, so that his payments form an arithmetic sequence.
    1. Find out how much Andy pays into the savings scheme in year ten.
      (2)
    Kim starts paying money into a different savings scheme at the same time as Andy. In year one she pays in \(\pounds 130\). Her payments increase each year so that she pays \(\pounds 210\) in year two, \(\pounds 290\) in year three and so on, so that her payments form a different arithmetic sequence. At the end of year \(N\), Andy has paid, in total, twice as much money into his savings scheme as Kim has paid, in total, into her savings scheme.
  2. Find the value of \(N\).
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{937246f9-2b6a-48df-b919-c6db3d6f863b-12_963_1239_255_354} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the sketch of a curve with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The curve crosses the \(y\)-axis at \(( 0,4 )\) and crosses the \(x\)-axis at \(( 5,0 )\). The curve has a single turning point, a maximum, at (2, 7). The line with equation \(y = 1\) is the only asymptote to the curve.
  1. State the coordinates of the turning point on the curve with equation \(y = \mathrm { f } ( x - 2 )\).
  2. State the solution of the equation f( \(2 x\) ) \(= 0\)
  3. State the equation of the asymptote to the curve with equation \(y = \mathrm { f } ( - x )\). Given that the line with equation \(y = k\), where \(k\) is a constant, meets the curve \(y = \mathrm { f } ( x )\) at only one point,
  4. state the set of possible values for \(k\).
Question 6
View details
  1. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by
$$\begin{aligned} a _ { 1 } & = 4
a _ { n + 1 } & = \frac { a _ { n } } { a _ { n } + 1 } , \quad n \geqslant 1 , n \in \mathbb { N } \end{aligned}$$
  1. Find the values of \(a _ { 2 } , a _ { 3 }\) and \(a _ { 4 }\) Write your answers as simplified fractions. Given that $$a _ { n } = \frac { 4 } { p n + q } , \text { where } p \text { and } q \text { are constants }$$
  2. state the value of \(p\) and the value of \(q\).
  3. Hence calculate the value of \(N\) such that \(a _ { N } = \frac { 4 } { 321 }\)
Question 7
View details
  1. The equation \(20 x ^ { 2 } = 4 k x - 13 k x ^ { 2 } + 2\), where \(k\) is a constant, has no real roots.
    1. Show that \(k\) satisfies the inequality
    $$2 k ^ { 2 } + 13 k + 20 < 0$$
  2. Find the set of possible values for \(k\).
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{937246f9-2b6a-48df-b919-c6db3d6f863b-20_1063_1319_251_365} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the straight line \(l _ { 1 }\) with equation \(4 y = 5 x + 12\)
  1. State the gradient of \(l _ { 1 }\) The line \(l _ { 2 }\) is parallel to \(l _ { 1 }\) and passes through the point \(E ( 12,5 )\), as shown in Figure 2.
  2. Find the equation of \(l _ { 2 }\). Write your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants to be determined. The line \(l _ { 2 }\) cuts the \(x\)-axis at the point \(C\) and the \(y\)-axis at the point \(B\).
  3. Find the coordinates of
    1. the point \(B\),
    2. the point \(C\). The line \(l _ { 1 }\) cuts the \(y\)-axis at the point \(A\).
      The point \(D\) lies on \(l _ { 1 }\) such that \(A B C D\) is a parallelogram, as shown in Figure 2.
  4. Find the area of \(A B C D\).
Question 9
View details
  1. The curve \(C\) has equation \(y = \mathrm { f } ( x )\), where
$$f ^ { \prime } ( x ) = ( x - 3 ) ( 3 x + 5 )$$ Given that the point \(P ( 1,20 )\) lies on \(C\),
  1. find \(\mathrm { f } ( x )\), simplifying each term.
  2. Show that $$f ( x ) = ( x - 3 ) ^ { 2 } ( x + A )$$ where \(A\) is a constant to be found.
  3. Sketch the graph of \(C\). Show clearly the coordinates of the points where \(C\) cuts or meets the \(x\)-axis and where \(C\) cuts the \(y\)-axis.
Question 10
View details
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{937246f9-2b6a-48df-b919-c6db3d6f863b-28_643_1171_260_518} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 1 } { 2 } x + \frac { 27 } { x } - 12 , \quad x > 0$$ The point \(A\) lies on \(C\) and has coordinates \(\left( 3 , - \frac { 3 } { 2 } \right)\).
  1. Show that the equation of the normal to \(C\) at \(A\) can be written as \(10 y = 4 x - 27\) The normal to \(C\) at \(A\) meets \(C\) again at the point \(B\), as shown in Figure 3.
  2. Use algebra to find the coordinates of \(B\).