Edexcel C12 2014 June — Question 12

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2014
SessionJune
TopicAreas Between Curves

12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b85872d4-00b2-499b-9765-f7559d3de66a-19_1011_1349_237_310} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of part of the curve \(C\) with equation \(y = x ^ { 2 } - \frac { 1 } { 3 } x ^ { 3 } C\) touches the \(x\)-axis at the origin and cuts the \(x\)-axis at the point \(A\).
  1. Show that the coordinates of \(A\) are \(( 3,0 )\).
  2. Show that the equation of the tangent to \(C\) at the point \(A\) is \(y = - 3 x + 9\) The tangent to \(C\) at \(A\) meets \(C\) again at the point \(B\), as shown in Figure 5.
  3. Use algebra to find the \(x\) coordinate of \(B\). The region \(R\), shown shaded in Figure 5, is bounded by the curve \(C\) and the tangent to \(C\) at \(A\).
  4. Find, by using calculus, the area of region \(R\).
    (Solutions based entirely on graphical or numerical methods are not acceptable.)