| Exam Board | Edexcel |
| Module | C12 (Core Mathematics 1 & 2) |
| Year | 2014 |
| Session | June |
| Topic | Trig Equations |
6. (a) Show that
$$\frac { \cos ^ { 2 } x - \sin ^ { 2 } x } { 1 - \sin ^ { 2 } x } \equiv 1 - \tan ^ { 2 } x , \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 } , n \in \mathbb { Z }$$
(b) Hence solve, for \(0 \leqslant x < 2 \pi\),
$$\frac { \cos ^ { 2 } x - \sin ^ { 2 } x } { 1 - \sin ^ { 2 } x } + 2 = 0$$
Give your answers in terms of \(\pi\).