5 The continuous random variable \(X\) has cumulative distribution function F given by
$$F ( x ) = \begin{cases} 0 & x < 0
1 - \frac { 1 } { 144 } ( 12 - x ) ^ { 2 } & 0 \leqslant x \leqslant 12
1 & x > 12 \end{cases}$$
- Find the upper quartile of \(X\).
- Find \(\operatorname { Var } \left( X ^ { 2 } \right)\).
The random variable \(Y\) is given by \(Y = \sqrt { X }\). - Find the probability density function of \(Y\).