CAIE Further Paper 4 2022 November — Question 5

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2022
SessionNovember
TopicCumulative distribution functions
TypeFind quantiles from CDF

5 The continuous random variable \(X\) has cumulative distribution function F given by $$F ( x ) = \begin{cases} 0 & x < 0
1 - \frac { 1 } { 144 } ( 12 - x ) ^ { 2 } & 0 \leqslant x \leqslant 12
1 & x > 12 \end{cases}$$
  1. Find the upper quartile of \(X\).
  2. Find \(\operatorname { Var } \left( X ^ { 2 } \right)\).
    The random variable \(Y\) is given by \(Y = \sqrt { X }\).
  3. Find the probability density function of \(Y\).