CAIE Further Paper 4 (Further Paper 4) 2022 November

Question 1
View details
1 Jasmine is researching the heights of pine trees in forests in two regions \(A\) and \(B\). She chooses a random sample of 50 pine trees in region \(A\) and records their heights, \(x \mathrm {~m}\). She also chooses a random sample of 60 pine trees in region \(B\) and records their heights, \(y \mathrm {~m}\). Her results are summarised as follows. $$\sum x = 1625 \quad \sum x ^ { 2 } = 53200 \quad \sum y = 1854 \quad \sum y ^ { 2 } = 57900$$ Find a \(95 \%\) confidence interval for the difference between the population mean heights of pine trees in regions \(A\) and \(B\).
Question 2
View details
2 An organisation runs courses to train students to become engineers. These students are taught in groups of 8 . The director of the organisation claims that on average \(60 \%\) of the students in a group achieve a pass. A random sample of 150 groups of 8 students is chosen. The following table shows the observed frequencies together with some of the expected frequencies using the appropriate binomial distribution.
Number of passes per group012345678
Observed frequency00824453626101
Expected frequency\(p\)1.1806.19318.57934.836\(q\)\(r\)13.4372.519
  1. Find the values of \(p , q\) and \(r\) giving your answers correct to 3 decimal places.
  2. Carry out a goodness of fit test, at the \(10 \%\) significance level, to test whether there is evidence to reject the director's claim.
Question 3
View details
3 A large college is holding a piano competition. Each student has played a particular piece of music and two judges have each awarded a mark out of 80 . The marks awarded to a random sample of 14 students are shown in the following table.
Student\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)\(I\)\(J\)\(K\)\(L\)\(M\)\(N\)
Judge 17954637469525057554263555648
Judge 27562607376413151455549506536
  1. One of the students claims that on average Judge 1 is awarding higher marks than Judge 2. Carry out a Wilcoxon matched-pairs signed-rank test at the 5\% significance level to test whether the data supports the student's claim.
  2. Give a reason why it is preferable to use a Wilcoxon matched-pairs signed-rank test in this situation rather than a paired sample \(t\)-test.
Question 4
View details
4 Jason has three biased coins. For each coin the probability of obtaining a head when it is thrown is \(\frac { 2 } { 3 }\). Jason throws all three coins. The number of heads obtained is denoted by \(X\).
  1. Find the probability generating function \(\mathrm { G } _ { \mathrm { X } } ( \mathrm { t } )\) of \(X\).
    Jason also has two unbiased coins. He throws all five coins. The number of heads obtained from the two unbiased coins is denoted by \(Y\). It is given that \(G _ { Y } ( t ) = \frac { 1 } { 4 } + \frac { 1 } { 2 } t + \frac { 1 } { 4 } t ^ { 2 }\). The random variable \(Z\) is the total number of heads obtained when Jason throws all five coins.
  2. Find the probability generating function of \(Z\), expressing your answer as a polynomial.
  3. Find \(\mathrm { E } ( \mathrm { Z } )\).
Question 5
View details
5 The continuous random variable \(X\) has cumulative distribution function F given by $$F ( x ) = \begin{cases} 0 & x < 0
1 - \frac { 1 } { 144 } ( 12 - x ) ^ { 2 } & 0 \leqslant x \leqslant 12
1 & x > 12 \end{cases}$$
  1. Find the upper quartile of \(X\).
  2. Find \(\operatorname { Var } \left( X ^ { 2 } \right)\).
    The random variable \(Y\) is given by \(Y = \sqrt { X }\).
  3. Find the probability density function of \(Y\).
Question 6
View details
6 A company manufactures copper pipes. The pipes are produced by two different machines, \(A\) and \(B\). An inspector claims that the mean diameter of the pipes produced by machine \(A\) is greater than the mean diameter of the pipes produced by machine \(B\). He takes a random sample of 12 pipes produced by machine \(A\) and measures their diameters, \(x \mathrm {~cm}\). His results are summarised as follows. $$\sum x = 6.24 \quad \sum x ^ { 2 } = 3.26$$ He also takes a random sample of 10 pipes produced by machine \(B\) and measures their diameters in cm. His results are as follows. $$\begin{array} { l l l l l l l l l l } 0.48 & 0.53 & 0.47 & 0.54 & 0.54 & 0.55 & 0.46 & 0.55 & 0.50 & 0.48 \end{array}$$ The diameters of the pipes produced by each machine are assumed to be normally distributed with equal population variances. Test at the \(2.5 \%\) significance level whether the data supports the inspector's claim.
If you use the following page to complete the answer to any question, the question number must be clearly shown.