CAIE S2 2017 March — Question 5

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2017
SessionMarch
TopicContinuous Probability Distributions and Random Variables
TypeExplain why not valid PDF

5

  1. \includegraphics[max width=\textwidth, alt={}, center]{61ba010c-d6a2-4c19-9998-0ae048244a32-06_292_517_264_338}
    \includegraphics[max width=\textwidth, alt={}, center]{61ba010c-d6a2-4c19-9998-0ae048244a32-06_289_518_264_858}
    \includegraphics[max width=\textwidth, alt={}, center]{61ba010c-d6a2-4c19-9998-0ae048244a32-06_273_510_365_1377} The diagram shows the graphs of three functions, \(f _ { 1 } , f _ { 2 }\) and \(f _ { 3 }\). The function \(f _ { 1 }\) is a probability density function.
    1. State the value of \(k\).
    2. For each of the functions \(\mathrm { f } _ { 2 }\) and \(\mathrm { f } _ { 3 }\), state why it cannot be a probability density function.
  2. The probability density function g is defined by $$g ( x ) = \begin{cases} 6 \left( a ^ { 2 } - x ^ { 2 } \right) & - a \leqslant x \leqslant a
    0 & \text { otherwise } \end{cases}$$ where \(a\) is a constant.
    1. Show that \(a = \frac { 1 } { 2 }\).
    2. State the value of \(\mathrm { E } ( X )\).
    3. Find \(\operatorname { Var } ( X )\).