CAIE P1 2019 June — Question 7

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2019
SessionJune
TopicVectors 3D & Lines

7
\includegraphics[max width=\textwidth, alt={}, center]{ebf16cae-1e80-44d2-9c51-630f5dc3c11f-12_775_823_260_662} The diagram shows a three-dimensional shape in which the base \(O A B C\) and the upper surface \(D E F G\) are identical horizontal squares. The parallelograms \(O A E D\) and \(C B F G\) both lie in vertical planes. The point \(M\) is the mid-point of \(A F\). Unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are parallel to \(O A\) and \(O C\) respectively and the unit vector \(\mathbf { k }\) is vertically upwards. The position vectors of \(A\) and \(D\) are given by \(\overrightarrow { O A } = 8 \mathbf { i }\) and \(\overrightarrow { O D } = 3 \mathbf { i } + 10 \mathbf { k }\).
  1. Express each of the vectors \(\overrightarrow { A M }\) and \(\overrightarrow { G M }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  2. Use a scalar product to find angle \(G M A\) correct to the nearest degree.