A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q6
CAIE P1 2019 June — Question 6
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2019
Session
June
Topic
Reciprocal Trig & Identities
6
Prove the identity \(\left( \frac { 1 } { \cos x } - \tan x \right) ^ { 2 } \equiv \frac { 1 - \sin x } { 1 + \sin x }\).
Hence solve the equation \(\left( \frac { 1 } { \cos 2 x } - \tan 2 x \right) ^ { 2 } = \frac { 1 } { 3 }\) for \(0 \leqslant x \leqslant \pi\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10