6
\includegraphics[max width=\textwidth, alt={}, center]{add3948c-3b45-4e67-ac84-e2ca935afd64-08_442_953_237_596}
An object is formed by joining a hemispherical shell of radius 0.2 m and a solid cone with base radius 0.2 m and height \(h \mathrm {~m}\) along their circumferences. The centre of mass, \(G\), of the object is \(d \mathrm {~m}\) from the vertex of the cone on the axis of symmetry of the object. The object rests in equilibrium on a horizontal plane, with the curved surface of the cone in contact with the plane (see diagram). The object is on the point of toppling.
- Show that \(d = h + \frac { 0.04 } { h }\).
- It is given that the cone is uniform and of weight 4 N , and that the hemispherical shell is uniform and of weight \(W \mathrm {~N}\). Given also that \(h = 0.8\), find \(W\).