6 A cyclist and her bicycle have a total mass of 60 kg . The cyclist rides in a horizontal straight line, and exerts a constant force in the direction of motion of 150 N . The motion is opposed by a resistance of magnitude \(12 v \mathrm {~N}\), where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the cyclist's speed at time \(t \mathrm {~s}\) after passing through a fixed point \(A\).
- Show that \(5 \frac { \mathrm {~d} v } { \mathrm {~d} t } = 12.5 - v\).
- Given that the cyclist passes through \(A\) with speed \(11.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), solve this differential equation to show that \(v = 12.5 - \mathrm { e } ^ { - 0.2 t }\).
- Express the displacement of the cyclist from \(A\) in terms of \(t\).