3 One end of a light elastic string of natural length 0.4 m and modulus of elasticity 20 N is attached to a fixed point \(A\) on a smooth plane inclined at \(30 ^ { \circ }\) to the horizontal. The other end of the string is attached to a particle \(P\) of mass 0.5 kg which rests in equilibrium on the plane.
- Calculate the extension of the string.
\(P\) is projected down the plane from the equilibrium position with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The extension of the string is \(e \mathrm {~m}\) when the speed of the particle is \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for the first time. - Find \(e\).